PureBytes Links
Trading Reference Links
|
(x-x0)^2+(y-y0)^2=R^2
where x0, y0 the coordinates of the center and R the radius.
This, in order to be graphed, must be solved for y and come in the
form y=f(x).
The solution is
y=y0+sqrt(R^2-(x-x0)^2
y=y0-sqrt(R^2-(x-x0)^2
(ask the nearest Math Department if you doubt for the solution)
For a day graph we use here
x=cum(1);
(this is the independent variable x=1, 2, 3, etc)
and the code to graph a circle, centered at (380,0) with R=20
is
/*CYCLE*/
x0=380;
y0=0;
R=20;
x=cum(1);
y1=y0+sqrt(R^2-(x-x0)^2);
y2=y0-sqrt(R^2-(x-x0)^2);
graph0=y1;
graph1=y2;
graph1barcolor=graph0barcolor=2;
The result is graphed t w i c e in attached gif.
Exactly the same cycle.
What you see is a cycle, has the math properties of a cycle
and obeys the common for the whole world equation of a
cycle.
With this you may solve a lot of problems, especially if you
are interested for the points this circle cuts other lines,
because it is the equation of the cycle
This note in addition to #3825 Re:Angles is covering the
subject sufficiently enough.
If you mind for the visual part, I have nothing more to add.
Friendly yours
Dimitris Tsokakis
------=_NextPart_001_0010_01C12446.01FF3E20
Content-Type: text/html;
charset="iso-8859-7"
Content-Transfer-Encoding: quoted-printable
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META content="text/html; charset=iso-8859-7" http-equiv=Content-Type>
<META content="MSHTML 5.00.3013.2600" name=GENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY bgColor=#ffffff>
<DIV><FONT face=Arial size=2>Dear Bill,</FONT></DIV>
<DIV><FONT face=Arial size=2>Besides what analysts may say through you,here is
the last lines</FONT></DIV>
<DIV><FONT face=Arial size=2>on the subject.</FONT></DIV>
<DIV><FONT face=Arial size=2>Open ANY textbook to read the equation of a
circle.</FONT></DIV>
<DIV><FONT face=Arial size=2>The happy condition is that we all agree on that
the last 2500 years</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=Arial size=2>(x-x0)^2+(y-y0)^2=R^2</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=Arial size=2>where x0, y0 the coordinates of the centerand R
the radius.</FONT></DIV>
<DIV><FONT face=Arial size=2>This, in order to be graphed, must be solved for y
and come in the</FONT></DIV>
<DIV><FONT face=Arial size=2>form y=f(x).</FONT></DIV>
<DIV><FONT face=Arial size=2>The solution is</FONT></DIV>
<DIV><FONT face=Arial size=2>y=y0+sqrt(R^2-(x-x0)^2</FONT></DIV>
<DIV><FONT face=Arial size=2>y=y0-sqrt(R^2-(x-x0)^2</FONT></DIV>
<DIV><FONT face=Arial size=2>(ask the nearest Math Department if you doubt
for the </FONT><FONT face=Arial size=2>solution)</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=Arial size=2>For a day graph we use here</FONT></DIV>
<DIV><FONT face=Arial size=2>x=cum(1);</FONT></DIV>
<DIV><FONT face=Arial size=2>(this is the independent variable x=1, 2, 3,
etc)</FONT></DIV>
<DIV><FONT face=Arial size=2>and the code to graph a circle, centered at (380,0)
with R=20</FONT></DIV>
<DIV><FONT face=Arial size=2>is</FONT></DIV>
<DIV><FONT face=Arial size=2>/*CYCLE*/</FONT></DIV>
<DIV><FONT face=Arial
size=2>x0=380;<BR>y0=0;<BR>R=20;<BR>x=cum(1);<BR>y1=y0+sqrt(R^2-(x-x0)^2);<BR>y2=y0-sqrt(R^2-(x-x0)^2);<BR>graph0=y1;<BR>graph1=y2;<BR>graph1barcolor=graph0barcolor=2;</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=Arial size=2>The result is graphed t w i c e in
attached gif.</FONT></DIV>
<DIV><FONT face=Arial size=2>Exactly the same cycle.</FONT></DIV>
<DIV><FONT face=Arial size=2>What you see is a cycle, has the math properties of
a cycle</FONT></DIV>
<DIV><FONT face=Arial size=2>and obeys the common for the whole world equation
of a </FONT></DIV>
<DIV><FONT face=Arial size=2>cycle.</FONT></DIV>
<DIV><FONT face=Arial size=2>With this you may solve a lot of problems,
especially if you</FONT></DIV>
<DIV><FONT face=Arial size=2>are interested for the points this circle cuts
other lines, </FONT></DIV>
<DIV><FONT face=Arial size=2>because it is the equation of the
cycle</FONT> </DIV>
<DIV> </DIV>
<DIV><FONT face=Arial size=2>This note in addition to #3825 Re:Angles is
covering the</FONT></DIV>
<DIV><FONT face=Arial size=2>subject sufficiently enough.</FONT></DIV>
<DIV><FONT face=Arial size=2>
<DIV><FONT face=Arial size=2>If you mind for the visual part, I have nothing
more to add.</FONT></DIV></FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>Friendly yours</FONT></DIV>
<DIV><FONT face=Arial size=2>Dimitris Tsokakis</FONT></DIV></BODY></HTML>
------=_NextPart_001_0010_01C12446.01FF3E20--
Attachment:
gif00119.gif
Attachment:
Description: "Description: GIF image"
|