[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [amibroker] Cycles



PureBytes Links

Trading Reference Links

Nice job on the Circle;..... BTW... I have one of those barking dogs. I
show him the charts in Amibroker and he barks go long or go short.

Try it out.

Best Regards,
Anthony.



Dimitris Tsokakis wrote:

> Dear Bill,Besides what analysts may say through you, here is the last
> lineson the subject.Open ANY textbook to read the equation of a
> circle.The happy condition is that we all agree on that the last 2500
> years (x-x0)^2+(y-y0)^2=R^2 where x0, y0 the coordinates of the center
> and R the radius.This, in order to be graphed, must be solved for y
> and come in theform y=f(x).The solution
> isy=y0+sqrt(R^2-(x-x0)^2y=y0-sqrt(R^2-(x-x0)^2(ask the nearest Math
> Department if you doubt for the solution) For a day graph we use
> herex=cum(1);(this is the independent variable x=1, 2, 3, etc)and the
> code to graph a circle, centered at (380,0) with
> R=20is/*CYCLE*/x0=380;
> y0=0;
> R=20;
> x=cum(1);
> y1=y0+sqrt(R^2-(x-x0)^2);
> y2=y0-sqrt(R^2-(x-x0)^2);
> graph0=y1;
> graph1=y2;
> graph1barcolor=graph0barcolor=2; The result is graphed t w i c e in
> attached gif.Exactly the same cycle.What you see is a cycle, has the
> math properties of a cycleand obeys the common for the whole world
> equation of acycle.With this you may solve a lot of problems,
> especially if youare interested for the points this circle cuts other
> lines,because it is the equation of the cycle This note in addition to
> #3825 Re:Angles is covering thesubject sufficiently enough.If you mind
> for the visual part, I have nothing more to add. Friendly
> yoursDimitris Tsokakis
>
>
> Your use of Yahoo! Groups is subject to the Yahoo! Terms of Service.

--------------76DDEACA1B26EBD29E1101F7
Content-Type: text/html; charset=us-ascii
Content-Transfer-Encoding: 7bit

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<body bgcolor="#FFFFFF">
Hi Dimitri;
<p>Nice job on the Circle;..... BTW... I have one of those barking dogs.
I show him the charts in Amibroker and he barks <b><i><font size=-1>go
long</font></i></b> or <b><i><font size=-1>go short.</font></i></b><b><i></i></b>
<p>Try it out.
<p>Best Regards,
<br>Anthony.
<br>&nbsp;
<br>&nbsp;
<p>Dimitris Tsokakis wrote:
<blockquote TYPE=CITE><style></style>
<font face="Arial"><font size=-1>Dear
Bill,</font></font><font face="Arial"><font size=-1>Besides what analysts
may say through you, here is the last lines</font></font><font face="Arial"><font size=-1>on
the subject.</font></font><font face="Arial"><font size=-1>Open ANY textbook
to read the equation of a circle.</font></font><font face="Arial"><font size=-1>The
happy condition is that we all agree on that the last 2500 years</font></font>&nbsp;<font face="Arial"><font size=-1>(x-x0)^2+(y-y0)^2=R^2</font></font>&nbsp;<font face="Arial"><font size=-1>where
x0, y0 the coordinates of the center and R the radius.</font></font><font face="Arial"><font size=-1>This,
in order to be graphed, must be solved for y and come in the</font></font><font face="Arial"><font size=-1>form
y=f(x).</font></font><font face="Arial"><font size=-1>The solution is</font></font><font face="Arial"><font size=-1>y=y0+sqrt(R^2-(x-x0)^2</font></font><font face="Arial"><font size=-1>y=y0-sqrt(R^2-(x-x0)^2</font></font><font face="Arial"><font size=-1>(ask
the nearest Math Department&nbsp; if you doubt for the solution)</font></font>&nbsp;<font face="Arial"><font size=-1>For
a day graph we use here</font></font><font face="Arial"><font size=-1>x=cum(1);</font></font><font face="Arial"><font size=-1>(this
is the independent variable x=1, 2, 3, etc)</font></font><font face="Arial"><font size=-1>and
the code to graph a circle, centered at (380,0) with R=20</font></font><font face="Arial"><font size=-1>is</font></font><font face="Arial"><font size=-1>/*CYCLE*/</font></font><font face="Arial"><font size=-1>x0=380;</font></font>
<br><font face="Arial"><font size=-1>y0=0;</font></font>
<br><font face="Arial"><font size=-1>R=20;</font></font>
<br><font face="Arial"><font size=-1>x=cum(1);</font></font>
<br><font face="Arial"><font size=-1>y1=y0+sqrt(R^2-(x-x0)^2);</font></font>
<br><font face="Arial"><font size=-1>y2=y0-sqrt(R^2-(x-x0)^2);</font></font>
<br><font face="Arial"><font size=-1>graph0=y1;</font></font>
<br><font face="Arial"><font size=-1>graph1=y2;</font></font>
<br><font face="Arial"><font size=-1>graph1barcolor=graph0barcolor=2;</font></font>&nbsp;<font face="Arial"><font size=-1>The
result is graphed&nbsp; t w i c e&nbsp; in attached gif.</font></font><font face="Arial"><font size=-1>Exactly
the same cycle.</font></font><font face="Arial"><font size=-1>What you
see is a cycle, has the math properties of a cycle</font></font><font face="Arial"><font size=-1>and
obeys the common for the whole world equation of a</font></font><font face="Arial"><font size=-1>cycle.</font></font><font face="Arial"><font size=-1>With
this you may solve a lot of problems, especially if you</font></font><font face="Arial"><font size=-1>are
interested for the points this circle cuts other lines,</font></font><font face="Arial"><font size=-1>because
it is the equation of the cycle</font></font>&nbsp;<font face="Arial"><font size=-1>This
note in addition to #3825 Re:Angles is covering the</font></font><font face="Arial"><font size=-1>subject
sufficiently enough.</font></font><font face="Arial"><font size=-1>If you
mind for the visual part, I have nothing more to add.</font></font>&nbsp;<font face="Arial"><font size=-1>Friendly
yours</font></font><font face="Arial"><font size=-1>Dimitris Tsokakis</font></font>
<p><br><tt>Your use of Yahoo! Groups is subject to the <a href="http://docs.yahoo.com/info/terms/";>Yahoo!
Terms of Service</a>.</tt></blockquote>

</body>
</html>

--------------76DDEACA1B26EBD29E1101F7--

Attachment:
Description: audio/rmf
Attachment:

Attachment: Description: "Description: audio/rmf"

Attachment:


  • References:
    • Cycles
      • From: Dimitris Tsokakis