PureBytes Links
Trading Reference Links
|
(I assume that Cycles = Circles)
Well not quite the "last lines." Your algebra and geometry in this and previous notes are flawless, and you clearly have conquered the equation of a circle without doing harm to the work of the ancients. But that was never the question.
What you have said about programming and displaying a circle is exactly right. However, it is essential to understand a tool and how it is used before programming it. As you have discussed and shown, if you plot relative tothe X & Y axis you usually get an ellipse. This, however, is not what youwant, which is the reason that software with canned Fibonacci arcs plot relative to screen coordinates so that a circle is displayed. Why do you suppose that virtually all charting programs plot circular arcs at all magnifications and time periods? This is not a matter of mathematics or programming.
The problem with not plotting relative to the screen reflects the dual purpose that arcs are used for. The first function is to identify support and resistance and the second is to interact properly with line studies, in each case providing price and time projections. Both of these have to be effected by plotting relative to screen coordinates. Hopefully, a picture is worth a thousand words. The attached schematic clearly indicates that a circle on the screen is not the same as an ellipse with respect to either of these functions. In this simple example, it is clear that the circular arc has provided resistance as it should. Also, although I did not draw it in,it is easy to imagine a line study (e.g., a tangential line) producing very different projections for the circle and ellipse. As I said in my Circular Fibonacci Arc note, one can use any shape on the screen that one wants. However, based on experience circular is the way to go, and in this business, correlations are all that we have.
Remember that these techniques were used back when everything was plotted by hand. It is up to commercial programmers to duplicate these conditions. Unless this is done one is dealing with an entirely different, untested "animal" that may or may not be better. So far, this is not the route followed by software suppliers. Of course, the individual can always choose a different path and customize the arcs, especially with currently available programs, such as AmiBroker, that are relatively easy to program.
The internet is loaded with discussions and examples of Fibonacci Arcs withand without line studies. If you are interested in this subject, it wouldbe worth your time to read about it, as well as note how other charting programs handle the circular vs elliptical arc issue. To speed the process up for you and others, I copied some charts from a variety of sites. Superimpose on these images an elliptical arc and see whether it works as well ascircular with respect to support/resistance and interaction with line studies. Perhaps this exercise will result in improved arc formulation, use, and interpretation.
Hope this helped you.
Bill
Market Analyst II
Windows on Wallstreet
A common technique is to display both Fibonacci Arcs and Fibonacci Fan Lines and to anticipate support/resistance at the points where the Fibonacci studies cross. Note that the points where the Arcs cross the price data will vary depending on the scaling of the chart, because the Arcs are drawn so they are circular relative to the chart paper or computer screen.The following British Pound chart illustrates how the arcs can provide support and resistance (points "A," "B," and "C").
Trendsoft
Arcs combine time and price to display expected containment of price actionover time. Circles are used to identify the significant high and low used for these indicators. Note how prices found support, after the significant high at the outer arc.
Many analysts use arcs and fan lines together expecting significant
support or resistance to occur where these lines cross.
Stockhouse
----- Original Message -----
From: Dimitris Tsokakis
To: amibroker@xxxxxxxxxxxxxxx
Sent: Monday, August 13, 2001 3:19 PM
Subject: [amibroker] Cycles
Dear Bill,
Besides what analysts may say through you, here is the last lines
on the subject.
Open ANY textbook to read the equation of a circle.
The happy condition is that we all agree on that the last 2500 years
(x-x0)^2+(y-y0)^2=R^2
where x0, y0 the coordinates of the center and R the radius.
This, in order to be graphed, must be solved for y and come in the
form y=f(x).
The solution is
y=y0+sqrt(R^2-(x-x0)^2
y=y0-sqrt(R^2-(x-x0)^2
(ask the nearest Math Department if you doubt for the solution)
For a day graph we use here
x=cum(1);
(this is the independent variable x=1, 2, 3, etc)
and the code to graph a circle, centered at (380,0) with R=20
is
/*CYCLE*/
x0=380;
y0=0;
R=20;
x=cum(1);
y1=y0+sqrt(R^2-(x-x0)^2);
y2=y0-sqrt(R^2-(x-x0)^2);
graph0=y1;
graph1=y2;
graph1barcolor=graph0barcolor=2;
The result is graphed t w i c e in attached gif.
Exactly the same cycle.
What you see is a cycle, has the math properties of a cycle
and obeys the common for the whole world equation of a
cycle.
With this you may solve a lot of problems, especially if you
are interested for the points this circle cuts other lines,
because it is the equation of the cycle
This note in addition to #3825 Re:Angles is covering the
subject sufficiently enough.
If you mind for the visual part, I have nothing more to add.
Friendly yours
Dimitris Tsokakis
Your use of Yahoo! Groups is subject to the Yahoo! Terms of Service.
------=_NextPart_002_004C_01C12426.EF04A220
Content-Type: text/html;
charset="iso-8859-7"
Content-Transfer-Encoding: quoted-printable
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=iso-8859-7">
<META content="MSHTML 5.50.4616.200" name=GENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY bgColor=#ffffff>
<DIV><STRONG><FONT size=2>Dimitris:</FONT></STRONG></DIV>
<DIV><STRONG><FONT size=2></FONT></STRONG> </DIV>
<DIV><STRONG><FONT size=2>(I assume that Cycles = Circles)</FONT></STRONG></DIV>
<DIV><STRONG><FONT size=2></FONT></STRONG> </DIV>
<DIV><STRONG><FONT size=2>Well not quite the "last lines." Your algebra
and geometry in this and previous notes are flawless, and you clearly have
conquered the equation of a circle without doing harm to the work of the
ancients. But that was never the question.</FONT></STRONG></DIV>
<DIV><STRONG><FONT size=2></FONT></STRONG> </DIV>
<DIV><STRONG><FONT size=2>What you have said about programming and
displaying a circle is exactly right. However, it is essential to
understand a tool and how it is used before programming it. As you have
discussed and shown, if you plot relative to the X & Y axis you usuallyget
an ellipse. This, however, is not what you want, which is the reason that
software with canned Fibonacci arcs plot relative to screen coordinates so that
a circle is displayed. Why do you suppose that virtually all charting
programs plot circular arcs at all magnifications and time periods? This
is not a matter of mathematics or programming.</FONT></STRONG></DIV>
<DIV><STRONG><FONT size=2></FONT></STRONG> </DIV>
<DIV><STRONG><FONT size=2>The problem with not plotting relative to the
screen reflects the dual purpose that arcs are used
for. The first function is to identify support and resistance
and the second is to interact properly with line studies, in each case
providing price and time projections. Both of these have to be
effected by plotting relative to screen coordinates. Hopefully, a picture
is worth a thousand words. The attached schematic clearly
indicates that a circle on the screen is not the same as an ellipse with respect
to either of these functions. In this simple example, it is clear
that the circular arc has provided resistance as it should. Also, although
I did not draw it in, it is easy to imagine a line study (e.g., a tangential
line) producing very different projections for the circle and ellipse. As
I said in my Circular Fibonacci Arc note, one can use any shape on the screen
that one wants. However, based on experience circular is the wayto
go, and in this business, correlations are all that we
have.</FONT></STRONG></DIV>
<DIV><STRONG><FONT size=2></FONT></STRONG> </DIV>
<DIV><STRONG><FONT size=2>Remember that these techniques were used
back when everything was plotted by hand. It is up to
commercial programmers to duplicate these conditions. Unless this is
done one is dealing with an entirely different, untested "animal" thatmay
or may not be better. So far, this is not the route followed by software
suppliers. Of course, the individual can always choose a different
path and customize the arcs, especially with currently available programs, such
as AmiBroker, that are relatively easy to program.</FONT></STRONG></DIV>
<DIV><STRONG><FONT size=2></FONT></STRONG><STRONG><FONT
size=2></FONT></STRONG> </DIV>
<DIV><STRONG><FONT size=2>The internet is loaded with discussions and examples
of Fibonacci Arcs with and without line studies. If you are interested in
this subject, it would be worth your time to read about it, as
well as note how other charting programs handle the circularvs
elliptical arc issue. To speed the process up for you and others, I copied
some charts from a variety of sites. Superimpose on these images an
elliptical arc and see whether it works as well as circular with respect to
support/resistance and interaction with line studies. Perhaps this
exercise will result in improved arc formulation, use, and
interpretation.</FONT></STRONG></DIV>
<DIV><STRONG><FONT size=2></FONT></STRONG> </DIV>
<DIV><STRONG><FONT size=2>Hope this helped you.</FONT></STRONG></DIV>
<DIV> </DIV>
<DIV><STRONG><FONT size=2>Bill</FONT></STRONG></DIV>
<DIV> </DIV>
<DIV> </DIV>
<DIV><STRONG><FONT size=2></FONT></STRONG> </DIV>
<DIV><STRONG><FONT size=2> </FONT></STRONG></DIV>
<DIV><STRONG><FONT size=2>Market Analyst II</DIV>
<P><SPAN style="FONT-WEIGHT: normal; TEXT-DECORATION: none"><IMG height=354
hspace=0 src="http://www.marketanalyst.com.au/help/FA.gif" width=526
border=0></SPAN></P></FONT></STRONG>
<DIV><STRONG><FONT size=2></FONT></STRONG> </DIV>
<DIV><STRONG><FONT size=2>Windows on Wallstreet</FONT></STRONG></DIV>
<DIV><STRONG><FONT size=2></FONT></STRONG> </DIV>
<DIV>
<P>A common technique is to display both Fibonacci Arcs and Fibonacci Fan Lines
and to anticipate support/resistance at the points where the Fibonacci studies
cross. Note that the points where the Arcs cross the price data will vary
depending on the scaling of the chart, because the Arcs are drawn so they are
circular relative to the chart paper or computer screen.The following British
Pound chart illustrates how the arcs can provide support and resistance (points
"A," "B," and "C").</P>
<CENTER><IMG height=263
src="http://www.geocities.com/WallStreet/Floor/1035/fibonaccistudies-1.gif"
width=380 border=1></CENTER>
<CENTER><STRONG><FONT size=2></FONT></STRONG> </CENTER>
<CENTER><STRONG><FONT size=2></FONT></STRONG> </CENTER>
<CENTER>
<P align=left><FONT face=Palantino,Times,Helvetica,Arial
size=3>Trendsoft</FONT></P>
<P align=left><FONT face=Palantino,Times,Helvetica,Arial size=3>Arcs combine
time and price to display expected containment of price action over time.
Circles are used to identify the significant high and low used for these
indicators. Note how prices found support, after the significant high at the
outer arc.</FONT></P>
<P><FONT face=Palantino,Times,Helvetica,Arial size=3>
<CENTER>
<P><IMG height=319 src="http://www.trendsoft.com/tasc/images/fib2.gif"
width=465> <BR><BR>Many analysts use arcs and fan lines together expecting
significant <BR>support or resistance to occur where these lines
cross.</P></CENTER></FONT></CENTER>
<CENTER><STRONG><FONT size=2></FONT></STRONG> </CENTER>
<DIV align=left><STRONG><FONT size=2>Stockhouse</FONT></STRONG></DIV>
<DIV align=left><STRONG><FONT size=2></FONT></STRONG> </DIV>
<DIV align=left><BR></DIV>
<P align=left>
<DIV align=center><IMG height=309 alt=""
src="http://www.stockhouse.com/shfn/aug00/images/slumberger_windowonwallstreet_chart1.gif"
width=527 border=0></DIV>
<DIV align=center><STRONG><FONT size=2></FONT></STRONG> </DIV>
<DIV align=left><STRONG><FONT size=2></FONT></STRONG> </DIV></DIV>
<DIV><STRONG><FONT size=2></FONT></STRONG> </DIV>
<DIV><STRONG><FONT size=2></FONT></STRONG> </DIV>
<BLOCKQUOTE
style="PADDING-RIGHT: 0px; PADDING-LEFT: 5px; MARGIN-LEFT: 5px; BORDER-LEFT: #000000 2px solid; MARGIN-RIGHT: 0px">
<DIV style="FONT: 10pt arial">----- Original Message ----- </DIV>
<DIV
style="BACKGROUND: #e4e4e4; FONT: 10pt arial; font-color: black"><B>From:</B>
<A title=TSOKAKIS@xxxx href="mailto:TSOKAKIS@xxxx">Dimitris
Tsokakis</A> </DIV>
<DIV style="FONT: 10pt arial"><B>To:</B> <A title=amibroker@xxxxxxxxxx
href="mailto:amibroker@xxxxxxxxxxxxxxx">amibroker@xxxxxxxxxxxxxxx</A> </DIV>
<DIV style="FONT: 10pt arial"><B>Sent:</B> Monday, August 13, 2001 3:19
PM</DIV>
<DIV style="FONT: 10pt arial"><B>Subject:</B> [amibroker] Cycles</DIV>
<DIV><BR></DIV>
<DIV><FONT face=Arial size=2>Dear Bill,</FONT></DIV>
<DIV><FONT face=Arial size=2>Besides what analysts may say through you, here
is the last lines</FONT></DIV>
<DIV><FONT face=Arial size=2>on the subject.</FONT></DIV>
<DIV><FONT face=Arial size=2>Open ANY textbook to read the equation of a
circle.</FONT></DIV>
<DIV><FONT face=Arial size=2>The happy condition is that we all agreeon that
the last 2500 years</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=Arial size=2>(x-x0)^2+(y-y0)^2=R^2</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=Arial size=2>where x0, y0 the coordinates of the center and R
the radius.</FONT></DIV>
<DIV><FONT face=Arial size=2>This, in order to be graphed, must be solved for
y and come in the</FONT></DIV>
<DIV><FONT face=Arial size=2>form y=f(x).</FONT></DIV>
<DIV><FONT face=Arial size=2>The solution is</FONT></DIV>
<DIV><FONT face=Arial size=2>y=y0+sqrt(R^2-(x-x0)^2</FONT></DIV>
<DIV><FONT face=Arial size=2>y=y0-sqrt(R^2-(x-x0)^2</FONT></DIV>
<DIV><FONT face=Arial size=2>(ask the nearest Math Department if you
doubt for the </FONT><FONT face=Arial size=2>solution)</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=Arial size=2>For a day graph we use here</FONT></DIV>
<DIV><FONT face=Arial size=2>x=cum(1);</FONT></DIV>
<DIV><FONT face=Arial size=2>(this is the independent variable x=1,2, 3,
etc)</FONT></DIV>
<DIV><FONT face=Arial size=2>and the code to graph a circle, centeredat
(380,0) with R=20</FONT></DIV>
<DIV><FONT face=Arial size=2>is</FONT></DIV>
<DIV><FONT face=Arial size=2>/*CYCLE*/</FONT></DIV>
<DIV><FONT face=Arial
size=2>x0=380;<BR>y0=0;<BR>R=20;<BR>x=cum(1);<BR>y1=y0+sqrt(R^2-(x-x0)^2);<BR>y2=y0-sqrt(R^2-(x-x0)^2);<BR>graph0=y1;<BR>graph1=y2;<BR>graph1barcolor=graph0barcolor=2;</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=Arial size=2>The result is graphed t w i c e in
attached gif.</FONT></DIV>
<DIV><FONT face=Arial size=2>Exactly the same cycle.</FONT></DIV>
<DIV><FONT face=Arial size=2>What you see is a cycle, has the math properties
of a cycle</FONT></DIV>
<DIV><FONT face=Arial size=2>and obeys the common for the whole worldequation
of a </FONT></DIV>
<DIV><FONT face=Arial size=2>cycle.</FONT></DIV>
<DIV><FONT face=Arial size=2>With this you may solve a lot of problems,
especially if you</FONT></DIV>
<DIV><FONT face=Arial size=2>are interested for the points this circle cuts
other lines, </FONT></DIV>
<DIV><FONT face=Arial size=2>because it is the equation of the
cycle</FONT> </DIV>
<DIV> </DIV>
<DIV><FONT face=Arial size=2>This note in addition to #3825 Re:Anglesis
covering the</FONT></DIV>
<DIV><FONT face=Arial size=2>subject sufficiently enough.</FONT></DIV>
<DIV><FONT face=Arial size=2>
<DIV><FONT face=Arial size=2>If you mind for the visual part, I have nothing
more to add.</FONT></DIV></FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>Friendly yours</FONT></DIV>
<DIV><FONT face=Arial size=2>Dimitris Tsokakis</FONT></DIV><BR><TT>Your use of
Yahoo! Groups is subject to the <A
href="http://docs.yahoo.com/info/terms/">Yahoo! Terms of Service</A>.</TT>
<BR></BLOCKQUOTE></BODY></HTML>
------=_NextPart_002_004C_01C12426.EF04A220--
------=_NextPart_001_004B_01C12426.EF04A220
Content-Type: image/gif;
name="FA.gif"
Content-Transfer-Encoding: base64
Content-Location: http://www.marketanalyst.com.au/help/FA.gif
R0lGODdhDgJiAYQAAAAAAAAAQAAAgABgACAAACAgACAgQCAggGAAAGAgAGBgQGBggKCggKCg/8DA
//8AAP8gAP9gQP+ggP///xMOABMBExMBExMBExMBExMBExMTExMTExMTExMTDBMTDBMTDCwAAAAA
DgJiAQAF/qAjjmRpnmiqrmzrvnAsz3Rt33iu73zv/z2AY0IsGo/IpHLJbDqf0Kh0Sq1ar9isdsvt
er/gcFchnDDO6LR6zW673/C4fE6v2+/4vH7P7/v/gIGCg4R/ZEOFiYqLjI2Oj5CRkpOUgYdmDAGa
m5ydnp+goaKjpKWmp6ipqqusra6vsLGys7S1treuZ5dnmgcCEwsCDcC/SLjHyMnKy8zNzs/Q0dKe
umW8AQsHDcETDQK/3gdF0+Tl5ufo6errn1EA7prwAdWImdgL+L8C3MPFE+wAAwocSLDguQktyCBk
QSZeQgCa6GHStGCCPm3cug0jwsnIJmMBOHo6wkpkOpMd/j3SIqmKJUqDMGPKFIUwjkIHDADo3Lmz
mkObEOcx2GVvwbYGB8TxO1DRpMin/+L9exkyatVTVA+OGxk1ayuoqZxOtVrK68yzaJ3VhHMzJ0+e
PkPidJtGZ1yJ14ogxecLGL6tVzuJDZyyJNl1WQfLAouKqtl2h9NKnoxs7Zu2ANhkHhrUsl26dznX
kzpBmwIFBgScXn36Y+TBjiNXhbp1HEeXXXMzpm0YsmvXYB//JqwSsFSugIvfFk65ufOWcy+/w7lZ
zeaGcuv2RIMdrz0iTCcoKL2PyHjxKcUq58r+qu2xx98HXh4/t3vZpBJbjX2/rErB8AGIHGH1Hffc
gQiW/hSdG5hpFpdlZ3zGXVDeSfWXAtsY0FQCEqDXHn8ChkhffySOaGKAjIVi3HAhEufRiMCJuN+L
r9VoIEkpJqjjjiou2EaDa1zX2YJwTRiRaBPNRkQBpzF5GgEIKFCAbwQaWJiM86GoZZZcpsgcKPoN
F1yAo+xmH4hXnsglj2y2+RNb0+XkIGdvgiZhd0jmZcR4EYwnwQMK/JmAmPa1yKKaYxbYn3yL0vdl
e1jeqJspZip6ZYlb5ujmpgeu9VZ1nNUEKhpCvikhaHgSRZp5EECAQAQPSOAnAunNCGmtM1baqKS1
JaccfvnJxhJwmtL0n5Jk4irpqmQ+yumzBXn6VhqY/n36GXYQ/khhnt8ZQUACUiIArpNTQkuOs+am
q64t2bLRFpx1Mritqsied5545q37zIr69utvLeKxJjBr7wxsMLYHDzyvNd0WYa/D+f4r8cQUG2Tt
xRhfrEnGnx5J7xHkrkZuxSSXbDLFFZ6s8sosV+xdJTDHLPPMNNds8804+0GUGDz37PPPQAct9NBE
F200FDodrYR37yjt9NNQRy311FRXfUXSUzNt9dZcd+3112CHXQTWUmst9tlop6322mwnQXbUZo9N
9ltENG0ET1PYTbTede+kBd7u+D0B320XbvjhWbwNddyDj1333Y1D7rgThAstuOSRXz055ZBX7jbi
/qCHjrjiTzNOuN7v8O05E6sHfTrmVdjdOuyPPzG76LjnXjXpTpuOBOqZ136E4Kk3nXTqgxs/OfHL
30578LJjrfwSssttPPDDJ29939rr7v33uzsvNOPJR8/889VLH3nxj6fvuPvBN/H65u8L7/blnWc/
/PT1xw/+/wDcm/iCRr7l/U5/mENe+xbIwMbBb33Umx/szKdA1GEvc3hT3QFrl0H7BfCDIOQZ75RW
QA5ukH7CU6ADG6jCFmIQhfI7IQQZ2LrqvVCDCHQh/0LIwx5uYYRH850JEWg/HfbPiNqD3/E8yLoT
2nB9s7PhA4t4wyP68IpYjN0AgUa+y0nQeuZL/uECpVjBuZVRCqfDX/l2qATA9W2J+1MfB/0mxSza
8Y6/2+LPSohH6nFNj30MZO6AaDQ+ClJuh0ykIo9GyKIZcpGQjKQkxdBIoj1ykpjMpCYDR7VLbvKT
oPxkJYfmyVCa8pSKdGPpuAVIVLrylSEc5fhYCcta2vILA1ibLAlIy1v68pdVyKXaVNm7XgLzmMhc
gjDTtksuGjOZ0ITmMtHWzD0+M5rY/OU0z1ZNn5Uym+D85DbF1s2efTOc6JTkAMYZNmKWb3tvhOfd
ZHnOdNpTkewEG+8eiETowTAJ9bynQPuYz6810oX5oyITAXrNgToUkgX12kFfmFB/LhQJAX2o/kZ5
uM5hfiqH+OPfBZ2X0Y2aFIAR7RoQK/fEJ1K0CSU9qUxNOkLP7dClLl1CTGfKU7WllJoszWH8cPpP
jDa0p0gVXUSZJVE10u2da7yeSOl51KRadW3C7CgTkNXUTlb1qmAV2zJTylWVtpJnOw2rWpWmVbJy
86xiSOta5zq0sTZhNmWlWjnR+lW6+jVqdiUCO/FqUDWSsK9/TezRAjuBwb7HrF4lClwVS1lcFoGx
NBoLZLOG2Mp61meMdaxu/jhZMMj1s6gN5mVXa4zHkpZ0XjRjGOMIhdOm9rZQCG0SCNtVJ1aRhQl8
gm1xS1xlsraxu3Xt1ibKz5c6V6edLa50/qmg29YuZ7N+bC5RL3qE4U73u9XF0XVfS8zZQnW7/mOo
ZL/LXi2EN7N5ndpKN9fPkQo3uu3NbxJCO07eYpeI2qVfTpeGX/0aWLDHHex9/ovCACs0vUZd74En
3IT3Pja+Utsn4GI7W/PCtMAUbq+Fr+tfvRo2iCAOMXgTfFflZri0X/Cuiik7YvFq1sSRZRiMZ+zZ
Gq9nuTvugox5/FcfXxjIezVtiomMWyOTGMg5rkeQmVxk1mp1CXjFMCOnvIUhU1mtV8ZscscrXy5r
wctfputPQYJkM18BzWle65qtG742yhakaRQfnOMc1jnbGMe+balIg+uEPfP5qleuAlO3/hxDQYuR
vveV8KGv+FRNanlozDXgoCFd6CVPOnSVzuSlLffRBM5thhaFcHc93dNRYzkLrtYnRJJ8xVj/bL5i
nB56Scpqntqazlb49dSQpZMA0HrYsIYCU4XNhZoGl267jrSOUctsF0+h2lAj9qzdbDRsk3mr8mG0
DJ276Ud/WNKV9ba3b4w2JQlz3VRbd6x5C28rlHfDiuuwPM897c+qO9lrc/e32ybvKNBb3GXr9Uz/
jYV6g3bMmnV41Aqu7HAb7dgxVrhMGX4FiYsh0YyythT8/DOKPyHL7CZ1lDHB7XtyPNhgc2wuS6xa
qZncCQe/+IkLqfGTvlzRMd/tu0Ue/gWS++zmLXaUzlceIWo3XAseDwM7l0lz6toc6kBPuetabgVD
oxPpVIg6GMY5AP+u2+g8yyvIlVDtBQuQ6Tlx+tPn3jWy10frI7/6fisedrdjmutV8PrX6Q5zr21z
5kfGAtrFoHa+F17nsL1zPCc/Tz333OeEz3rdjTD0Jyte70iY88///jngNpfT/JZyakd/7a8x1uwQ
d8Liw9D4k2ee9E10cKp5je503771hkdw4rUea9EOrfY4//3WG92/FT6Y9/32t/KlIHb3XhbksAd2
hWMPtPiKfvq3LjV95ej83Utb9XJ/fMetNtb+1mbRi9679ktuXNuvH+G+Nb2Ai7rq/t5TFuzARzWM
9QDDV1ZallXGFzTeZ3/3t3Sll2vNZ1+d5n+KBYDUx37HRYCeR3zbJ3x/1n31l3QNWDT7JFSnZ25M
IHiDN4LqB1i5NE0aGHHWNhtTd33z1zMYtmasR2r5hm/mdT5QNYHRJ30sqHlS84JG8AAxmH02NnVL
VX1sxwQ6CH7hB3eAZ087eIECOE5KuIEGKFg1GHpE93ncdwRTWIS4l3AUWIEAR4VEw04aSBpVRxpk
F4Z4lwUJKH/g5oY9g3FeoILhZIFa6IJJEINROHAjdmXVl4diKIIt+HactYZsiIYB+DRIiASGuFt+
54FiJnxQyIhmmHyUyINXGAWA/hiIfCiKlohcYWdtNTZ7RcdmUqiKRuiAajiERDiKBgc1WdWGnMdi
oQeLodiIrBh/x3WIugg0fihkl7dxvviIb3iMtciJ0uiB7kV2rAV/1fiBreg0y8gFpwhOgjiIRTNN
wqh1r9gFdbhaIcFVUrF23FiJkFeKtdWMzpiKe1iOw9hxXNV+1riNxWdlutWOF1YVS/WMtkhbUUV5
hrVzEYaLuQiN3VhXxAiNThaPShBeCLhg/nWQ+ChCQeVB9UVoqcdyxDWOu0iRFTmNrNiSfhaQ1MiJ
HLlgHpmMyhhFkoND5ieE6IdbKOl4QLOOv9eJDCh7vciJnSeD5MiSJIiTBkSS/s9FYJL4fwjJlLSY
WxlZlUR5lbPYWESJcsaIjBIpQKG2e0AogSXZdCdZlVaZj1jJeHq4eDDpksagVdj2kzfpRySJUCgI
XVM5iR/5am95h3pIe3GpaK7GXyRBdWOZkk/jbBMUgVDplxCZfo25lC35i6PVgWm3X0cpj11Jl5k1
cEXZlmmIPs+2f9xlBOG4goEplv8IhqS5kmCwaFu5VVkSgmKGLMwGb1BIBfcGhAxJfg7Zf5UZkZfp
mLHZkqN2jmSYmab5Xg7nmy9mhdOFl7ZHlIzJmYUpdduImfuIWdPJlgm5OPboa1i3BQGAgHp4aRHl
nLFIhXY4nuTZlNYpXdTJ/gU02J45WGHwaZT1CZ2e2AX5GTXuhGJ/6XsBanCfqZmE+VP/+QTneIDy
R5+v2Yf0aIrniZ4LGpplt5zbuXcUGjQTCnE1KHEFaqAZWo8JqqB8WFZ2FRJ2OJpJmZUkWpX7GXoo
mp5ldp/XyaN0BqPZOKOPFaI2GpQ4CpBekKIq6qP4qZ7I2JFD2p3LMU1Cupwfh5B0WIY2WZpQ407E
44P7RnlpGXfsxaQFCIzoOGZWKn/wyDVfGJseh6ZfGpJD9Vs7WaYrOlD1FqdKGWaX1Y/JtU1XKqBd
46eEuqRQWmdNBEN8GZXqdZw+CaRpGpPIhSyD1Xm2+Z1bg6ijuagXWoWN/spEjzpgkdqT39Wnsiil
Mbme1cgrMBqhQuOps5mcXqqiZXlBT5mnKbihSaWqNCKHBimbHpijnMeExtpuJlqrpgmUgPaAIol6
kPqQqJqqoOqFajpWw/qL2belauOpYgesVgOZDQaVpkqtJplfFqqUmqWYl5qZ79Yl1yWrs2qi4aqf
pAWtD4aC52qc1WqtUIes2Tql2Viphgo2KHcmtXmt4dODwvlUZ0lVLWqZdMeEGqmmZpcl9KqAiVd9
68qot/ivAAtrHFmkh+mVMgpfifemXwN7HouvDLZKE7t6WBcjJkuMicabBss2GWuYDDuue8qT6Wpg
1EmQG2iH5oh3TMiz/iXrs5QKtE6qXxQnhzebka/njsPHs7YRlqF6gw0btJQpsmfahhbbge6nssyK
sL3itE8LtZEoqSOLmBbXru+5nEqytAE3hh3qrPn6tmI7tiPYtAe7WgW1bHqrtsTyBTsqa1FLtCzY
jjQpe1x5uC27iTD7s+SVRz8oeZXHonALuBPpWslKpWznpwFXdZhrq9UZaJIZbUKrliHWdhA3uvuo
bL9JNPGAunvLtzGbPTpZqvzHmr46V70ZhVyLpTh3uyWHt23bpT2aeyaomqomvDP7pNQXX0YbmsGm
vLSHvYpKoMwkfnMkea6rp0QmbBjGtf95vDanZYsLvkCll3gKvKtZ/gQlxL33qJxc6qDqib/8OLmq
q7/tZFOpCVzSGrZD+6ntZWvuu4C1yb6zCsHwO8HxO266h5a9SoH+i3kCjCOFyngS3L0brMDNW1j3
E6abO1WWp8EUNm9Jh6kRPMKJe3wLq0vFSUpHNcIc/L2Di4MzrJ8/TMOK2zbf2GU5rGJRt21gOyy4
cnLI8TT3SsRLjMCw+ysH5r3AuW1W0xKdyrYe1biECboYKT/FNsX/87KFc6A8J2lG2sL7S8bFpsNn
jMZpbManOrRt7Ma4gUZ4I8feA4V+DAZFfGbGlMd6TLm1i8iRBMigM8hZEDeGPGF3+2uFG8iHE8Kg
yTZq7EiFXKMz/na3eeeIooaDoGZTnJtCkbfC0RfJPrSxaeOqYcy/bjlJt2vJYVCCBtw95ZvBq6zI
KGVHHxrLnCqLi1zLuJNpecSvwWu/hZy1vmw4row2iJeYfbdImBy6jYyTr1Nu0+qveOzMaRs60Xw2
8SqhzhtC3GvLIJmrb6RE0gt9PRmihvtB4yxWhzuh6jxs6ew9uPZb3Nyv1NvLG0jC3lPPYUN1/dm/
WXTNzSrFbfRsHfR85/fNJzLGuWPQQUfQ9MrQhsPR2HzMdqrM5LbMRADJvDG7/8OyAXS2skyg+ayA
G/zSGOqw0pNv8ORhvBzP4Kwl34PRrhd7Bu3RYSPUHz1Idoyu/rArzyBhuUoFzMjo00HMtDos0z7j
yFhg0gO9002dRZXs01bMtEVD1G/lo3KZ0k6tTH4c1Ycq1g1dylYdeM1c1OLs1Ztno5as1u171zz0
1l0X14Jp0YiTUnS9WEcqzD5M1b6iNIi9fH5L0X9N0F58ox6qO0S6md2G10eH2cvrQ3wN1xKm0hzY
fX4s2MOcNp1YuPqs2SSr2iBIaUftzUktyuF8uSqpTA0KzdVYk/EGGX33xMiGRWDKuRymuZ77tzcY
00aDtKUtzdL4U2y9vFxcuXaEy+U3kgcslZ+7tpBdw4vlj4AKOpj1ki6HR8gMabtMxWZ6q8jtNBdb
OOxpqbYb/oiLrTTlDYES/brpPbnrzVYD6942yIqzN99/LEjWoj8bJpnXfcdVfFdYy7Hs3d9to1vC
+NzWLODeuDotNb+Tid3GHY8ULtvRaKmD7Z3Ct07waeGXnEoEbN4I3pccnsAgvt+EHZOgndEuub4o
frqLRN32Xd0bruD5DeJw6bWRLZpGzjZttdzXluNi8+FGTdNSJU8Rq8odvt1DnNWkjLMYi1VWBsKm
5OS609lU0JqOp7vdq+VIOduAxWJBDUpM/rwhC+Pti+WdieaG+ubZCtV4PnF73qSNveCgZ+bc7aBf
+dNeqaai3ee4C+b/I+ZTQOb2R7UOHp4AyZtUXV01fuaB/sToAbTJlsRKI86Agn7llG63bzzpmO40
nN5uiu62cQ7oE6fVHQybIs6l6myQSY5goa6Jrd6/ve7qcDO8PDrqAMyltzlwt57nVbPqy/7rffvq
QR7oz0zkN3jsoa3Y23roPazqzM7tzm5Wjl7ccn4FEcq819vB7126p97aw5jp3g46rC1KpixVNY3T
QWi+XFDuss67tH7kKI3s9SqGJt7k8Z7X305OdqpCPY7B6D1l+k7n4Nnv1m7uMv7fu77aCNvtBK7N
RDTS9VvS9vjw7BrAhepWYwLYw06639rERwMg4cRcwunx08vM1cudZMvUJ2vYa4q82ErtmYy6F3/Y
Gn8s/gc/OuKLasVDnD+O1NFO7hNM7AnmybMM3/9OfB+L5UEfwy7Pj77tUP1cUfQ78yBf89qbpLn1
me7rio6Juu+Ltkr+x69wVeTquy3ezQFd5We/vutO6HoL9N9H59PppwL3aYfD4xp+3i8O61Yg8lbO
9yfv9i0t6nu/9sOX9YTfBcFZ71JOnBKb3fH585NvqQkL+W9vY6Zr80G6spdv9GAsxB7++Uqd+pd7
+o0I2glLWJa/+s322nc/7q5PwjCpiDOI8xNJ+6X+17CX+7r/N7xP856f5V9NG6g/8ic9++s+8bwB
ucq//Ilzw7NE9qQO/J/v9vQW+DO4jdhf0dvP/VgQ/u4aCv483PhSaPLs+r60evxR+h7rz/5X0/xj
//wgMIkjWZpnGZwqKg4tTLLTPMd3Otr6+Jr+BIgK7GhBHDKpXDKbzic0Kp1SUQBAdcpgKACOyRab
ZRaNMGGzxhub27LeCYg2lY/sOz6v3/P7uKsf0lbXV9jdXAmQmkgd3E/SoltVZOTcgFwTYuAmZ6fn
Z9UVYImoiOhoqekoSerNoBcYg9iYpmNb4+NPbQ7jWh5Rb/BlnK3SLihysvKy3yrrCNasKfTErLQ1
zmuh7GGxbeQN4vFbsCQbpbdLejhzu/s7vJTzSXRL/TQ1fox2rHQVZq5bSYYlgsQI3B106nQtHBjv
/iHEiBLnmYjWihq2fNWycYFliA3AgjRYAEMizmA5XFMU2mkR0qXEmDJnfjp1cSPOnDgz6vOHgt9H
WusUkXQY8AZLPItKtkTxkhjNqFKnZqGo8VnPqzxhAOUGMt0lHwhdnkSSdE+loevWUm3r9m1Fn/pI
zd26tUVXuVKeNhwL8ygMpiVVZilDUJyPWuPgMm4s06o/bJG1XsXbcZveKHxb+jWGklcfwy7Kciax
2DHq1O5OkWJdDZXrVNasnsjbraHpFZo/kwtdZHNiRblVEy8ej/Yn219xr2NqtGkMwnqcx7H0ja3x
7NoDIfekXCjz8ObCbR6STCVp4dC3s2+/p3un/u9ZDkMF7Vm8eWTo6ws/7f4/gEzAx4l8/6hFRybY
2RdPegf5FyCEEdpzEygFUgGcbkwExxuD/CkoIYghtuaOhVNsCBgU5WUIUYNBSCcijBEOuEmJe324
G35UtTjAizH66N6MgdSI43rgFZnaCzaN9yOTAbrGyjyzSRlXZiUMmeKNWAKoJHVNegmkXDyhghFl
c1lGSD+3HWnglqz1+CWcjcE3W1Z2VfbTZWkut+aFTj4ZJ6DbzTmNGJKVqdOZHnll5IMJtklhoJGm
ZlOUZKpS6KFVjnDlEyr2KSmoocaEXEaYEpopR2gGNV+WnYr6Kqyr6XUNa4bWdWdtea7KJp8m/sb6
K7CeQGZFnai6ouuirDbUqEnBOvusHpD9OeWlPQXJqRNyJKYmtN16C8WfyGDraEvM4mDut+l6G6Qf
42poC0HzoasuvcCy24e7S5CmbL39+qsKichqmsm+/xp8cBThVigwt60i/DDE0AxMI8N7DhcxxhnT
M7GQFRt5scYhZ3wvH/neJ5LIKUOscHIe8wuyyjH7S9tNk1XbGscmPwezzD2nO6y1UGal0cQ6N4ui
z0k/OyjAEg/9NFcu7zGv0lU3yfQ9G5mq0114qprs1FaLHSylNmttqZ1meq0ox76O/farpOZj6tbX
4GqC0a7CvbekNENZipJpI7o2ZoFQzTfi/uwBXRFdOdmtdq5ft21j4pVfXfO0jb9W97VS63G45aGj
RvIeeWcrOuohkq6H6eSm/vp/q+fR+ruw294ey955ngfot/sekex40K7v78UTF/wdw59sPPNwIc+G
8js3P/1Uz48R/dHUax+VwjVLTO3fguyOR+/bm9/H4nQ6vj7RqbJt+PnxA6+p+rZyfbeV4zcsP//L
YL2Tpe4HObzpz2L9OyAyyqa5e9jvcYOL3Pv8UD4EUtAJcsNH3dgHtUQVToIV/GAn/PY9QDQQKw8k
oOTgB8IVoi9MxFqf4IpWwI+xsIZsCJeSiLYK2XxPfCn0oA2DOAbrZQF75xIiEqlAxCoY/pEdSXzi
E5ZIhSbGYIJQZKEUtTDDl12xizfIXXy2yCsvknFCAfthH6xYRgRmUQpUPMMa4xiXM0aQD/GSoxzB
SCAxfgqPeZzVDgMJvh66r4Np9CMe0wfDADpQhmi0IyL/GIPJmK2RhdTTISO5RqYFEGpdg6AhNSnK
IVJKc6+5VAbbd6xHjrKV76HHIm81wPyx0pW2HCKxSqjKffDxlr5MQiVjKcAT0rKOvzwmuGIjSEIO
MmqSKxs0oynNaVKzmta8Jjazqc1tcrOb3vwmOMMpznGSs5zmPCc6pWmbbGqNm+285jutGc9qzpOa
9ZzmPaWZz2juE5r9VKBF4BlQeQ6U/p4FtedB8ZlQfS6Unw1F6OYIGlGDThSi6bwoAL4jpl1u9Gkd
1eBHQ8rRkXqUpCA1qUhLqtKTrjSlLH2pS2OK0pm2lKYwtalMa6rTm9LRkDnlKVB/KlScEnWnQzVq
UYOa1KMqFalObSpUmSrVpe6SGRql6lOnmlWsRpWrWu3qVsMK1rF+taxePatYJ4evXprQgk1Q6yxh
AFdiyvWtdhXQXZcw173mVQl8xSu4+gpMwUYlb3Nt62ABq1fC/oGxX3TsJCFbV8X6VbL2sOxjKZvY
xbbFsAnDLCw1i4S/cra0lRVtY1GbWdNu9rSsVW1kYTtZqsiHVi68WQ5fuDlCLnCZ/ozTSvp829tm
WqtQ3UPsAwc5K95Cqpm3NdNygftc2Rz3Zrv97XWz21bbhja7kDIhdSnkQO0eirzF5S08lNOKrmWQ
Y+2903vVZtyPzo2Rv9UlVu7ik/mO6L4YESF+6xu0+wq3ceuFb7EuK8z9Jnhw/N0gAE8V1/i+8MDy
tS57G3zYkrmMvhd27wYZvGDsarC7lRHxMzJc4ucianFVRW7WRCwmFpvNlB52MF1TieAR2xh/OEZu
fjtJYhbLssQfjkltX4xjPUa4xf6V8I8hDGNTHvnCKzax3YhsZASruFTJRWx0V8rl5ob4yWezspR3
7OP2khlXKH4pl5Hc4fCRuMlV/tLxl9lX3eISmVZYxjMGlVzkM1N5vGBGr4ABSGMql7fNiZZxeR+N
yiGP0MRco5+GKc3oYUa0zvPdMIcfeWNDT1jMQYauprdM6ijb18CCHubWtrtpWO/YVosGMq3RnOdT
bznQqO4xhFd95zID+27CTvUnl5HkYBt7sl6u8ImRreYwx9nKz8byCFH8ZvBy29WE2rOTsc3sAULa
16HVr7TRTG0z13jQmTn2Arud3jmPO5gKtt+5Wy3resfb24Qud5NT7WbIRdfevIb3r9P9Y4NLetg8
3reqE+7wABfZ4aYOeK+VTW/r5leZmMbtntfrYu4SOLzdFfl0d6hgXc/tSQX3/vjJKyXwE463zTl0
dHgpAj5HX/q2N+ckysU9UYHbHOYP8WxgZbty1zK9tU4fLWjrDHWl67bpU39taqMY9VnHlrbIQibY
vf5MjJKwomQ/eykfivaz/3Pt52y728sJ97h/c+5ozwva7U53cup97+Lsu9/dqfbAhxPwhKfo4W3S
lU2AWiqN556gIn+8dyyeO7G7vHYeP5HiaL6IX7c8kDCfnc5DhPSrofznmyF6xUl+9JxH/dcYj+hJ
Vfr1nHbepGkvXea2UYmo1LLwUo++NDMm1ut2fNPoivyMt+XBI052AuOqfCYKnw+xNo7xq1695Js+
Gdl3jCWhHGN4XF/qwY89/ujDBJveqx7WsHELpjgH6NJXvMCbHynF/Sff9XcfhYqSPYbpG+QJEL5t
35lRWP/hwffl30PUXM7l3ul12sMlT/W9koHVio/RHwFy3WMEWiplzajIUuAYIMEVGvlBFwZKXxRU
XvvxGvEBjwhyYAg6zgdOXzssoAweB5C1WwJ+Vri92hRVYLQMDQPO4OMU4PLVDxDq4E1B3zuE378x
HyhcXxEGIfq14EU8IFVICcnZYAPW36ppIA7ZHwzuHoaxnzzs36eVjhDmQdv0IOjhTuthn+21AwsO
39U13+rVIR1OXk/FggMEoiAOIiFmFBgcIgMgoiImIiMuoiM2IiQ+oiRG/iIlTqIlViImXqImZiIn
bqIndiIofqIohiIpjqIpliIqnqIqpiIrrqIoEiIsDqIhVmIs1mJGIcsX3EAXuGIr9iIv/qIvBiMw
DqMwFiMxHqMxJiMyLqMyMkAuxsAuYuIzwkAXdMU2bAE2ZmNHNCMzdiM3fqM3hiM4jqM4liM5nuMx
XqM2ZmM1SqI6ruMrWGMsZOMtYmM0miM+oqM+5iM/7qM/9iNA/mMxviM83iMlvmM92uMtfg1CJuQ2
BiRECmRETqREViRFXqRFZiJBrmM70uI8hoFDViMufqQoaKNBYiRKZmRKrqRKtiRLviQjbqRJYoE0
fqQsXAE7LqSiNORM/rqkT8IkUP6kUAYlUYKjTOakRtokTiLlSK5jSNJkUUblUE6lVFYlVU7lUSrk
JCIkR+rkNmRlPFqlWF7lWJYlWZ5lOtpkQc6iI4LlNjYlPOakWc4lWtYlXd6lXUKiW56kXqplV1qj
AgSmYA7mYLJlXuIlYh6mYiYmSjoAYT6mYBqmIjomZD6mV/YDPC2mZjLmZnYmZ0YkNk0iNnVFXJam
aZ4maqamaq4ma7ama74mbMambM4mbdambd4mbuambu4mb8Lm1/QmcAancA4ncRancR4ncianci5n
ahJCZT4ndEandE4ndVandV4ndmandm4nd3and34neIaneI4neZanFXl6Z+Klp3quJ3u2p3u+J3zG
5xWEAAA7
------=_NextPart_001_004B_01C12426.EF04A220
Content-Type: image/gif;
name="fibonaccistudies-1.gif"
Content-Transfer-Encoding: base64
Content-Location: http://www.geocities.com/WallStreet/Floor/1035/fibonaccistudies-1.gif
R0lGODlhfAEHAfcAAAAAAAAAxggICBgYGCkpKTExMTk5OUpKSlpaWmNjY2tra3Nzc3t7e4SEhIyM
jJSUlJycnKWlpa2trbW1tb29vcbGxs7OztbW1t7e3ufn5+/v7/f39/8AAP//////////////////
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////ywAAAAAfAEHAUAI/gAnRKBA
sKDBgwgTUoCgsKFDhg4jSoQosaJBihYlRpiQsSPGjhE/gnQoQcLIiAJPohyokkKEAi07brjQoabN
mzhz6uxgYafPnz1/Ch0adKjRmgECVEAaoEPSDU6bRrWZlKpUplWfMr2ZtGsAqFWtTt2ateuGsGN1
Fj3KFoMGtkc10IRrVC5dnBYO3K35gEFNBg46QFjQoUBNAmwbrD1K4cHdDQn2Sp5s8wIBCgYoa4YL
eW8CqHQVbx5NuvTRC3pN79yAQehnuDQdLDZKIXBl1TjnTj5gIfNN3TUPAL+LATTl17+HioaLoTFu
DW9Ns8Y9fbJlBg1w47T7szPboBj8/t5VEH22afOMEXTAoHeDgQcOMEhQwDNBAvSn33KwmSBCBweE
1bSfThL4lxN+HWjAQHRwUUAfbhi0Zhp3Ew5H1wUDEGCYdncVuNcEEEjmAAUcbkaBejrBNIAAxu11
AAUEDHeBBENtMOJeCkoIV44l9ujjhQIUsOGPcTmgm3CnxSdZBDQSWRMCAKRGF2J0OZAdTrx1oICB
Hdj4UwMk7mWBbXct5OSZaOKFYmgG2EZBgDWBuZ0GBQDHwEs3PUDAADaZhCROYfqEQQM6/hToTRoY
uZl5J/IXKJUdQJrToTXR6ROVBNBnAAX2kbilTWTWxKROAwoAwQN9hbrfBI51MGAH/tg9gABwr9Yk
G6AcXlDokxQA4BdqO1q4GQbCfidljxtocMCeA1Cw4QArWkDlARM8WJN3NiGYkwYLtHiTtjdtwIAC
3gLFoE2NPkkjA445oN6u325rAFSGvYiAnpBKgIC3F2gwAJTF6gRVrQIyMNNOBLuKqLUHcuiWTQZI
MG9zCEScgAJhQvcThTYley5dxFIGrJMvHsAAAwQsNmS2Bexa22Y34nbvBDYRIGmk5RKQQIiLpmaB
ADRvMMECoeqEAKWRXsszTg/QfBQGS9sU3sdp4mQAvE9OYIACC9z8U7+w4lnTBWsSmReRUP15VJ1l
36TjBQwTdxMDAe9FwAEPHBAd/gHlgqyaBqBlaRN8wjlYtFAU10TQTcfaBEFkP2H9dYYWNGtTBIVq
7KzBRsWI9LWtYYDAAhPcXMABkB+VLGVn/8jxURZQIGXXVCIoQdRCgXutrH3rBIEDBmCqwJWa6Q7b
W71F6YAEBQxvUwFQJeD1TQP0VAADkdE9FAETlO60WnRZcHGvxL/o23qtTZD6UAVE8MCGJo9OQbJ4
B5zoAOcL9Xr4jXO4etU5kZXk/hYBB7jrARcA248SeIEFICAC0OldTqj1tfZ4TXYWKIAEgHetC+Rv
PfnbAJ/GtqKV1eRfDUCMAxwzwJHVxADVSoCzNCA9CGRHfWyhEkzehSIAkOdp/v1DFNXEFESjPCBA
BrxAAwLDGw+ia32aWaJ2BgPBo0yvZgD8kQUigICemCqAABCABODUgQskQE41EUACFkAiKeZEdA2Y
wIYgxYDfuScnG2zb2KTUnwOc6oMNatvW2iI/ALxrSA2AACDv0jofacB4RgFM3ejyuZ9EIAHxo0+i
dlJJzXRyL+NyAEOYs6lFKi6SV7RarwCwEwU0qSYSgGK2+pfAv0FSaBbo10IsgIAGBO92BEAAAmJU
AAMIk3dGaWSP9le80kBycOKJgAB6c7SGGeUCucRmArPJTW1izjQK3Ishu2RC9LBrMuhRgAOu55hY
MmeAkmHmUQSHk+KYEC7K/syiZGJUpezc8y4RwJ0+B4qlT6IpkaYkqEJrkk//DZEy+LOJGy8Fgd/d
DJ7D0g5G7wI4jXpUO/8rTUhF+tDT/EuYwpTlTh5AvJS1x5D3sok8JzOB1AQTAVQT3fKGdAGgVWY+
UFKAAtCzAOnhUzvPvGZJWYdUh22ULjOdTFSHYpkHCJQ6qoleTWvSGvdER1mHuYkr55iua0GLSwtN
60IlqNZwtZWhB4jQWyfjkgOkrSgjDBcCFPmTARSga3MNrGAHq8+GaueRqvlkcw5QRFyVyKCSgeyF
nlom7Uh2L7r62yT3EjJ0NrZCiS3NZSWTVMaoJpznsaxTNQuhzQLlsz8B/pHbAuRB6LlVOiIl7Gp0
2zGQ8va2bfUgNh3p2qOSprTGVQ1yv7ZUdDYVNuLJzbnkWpMfamaqnC3uTni5E8hBz0odaNQIufeu
zFDJAMBpLkdLQ9l4HnZbceMMWyfT3h3tJGaKC8wFojs34GzAONZ1TXfU+xgC+8QyF9MJY+fCxQMY
iLFQkV3qEKA2myygvoQtCRkVqoH4/haU9z3Uyy5gpeEwQHytJLAepeph3Lhwmdwy8NhqcuGbMEm7
RPnJijWcTNVu50HVGYr2ULsZyCV1xTlR6X9ErN8kVsaAFrAWdbWk4o1t1gJ+6fBNFhDly/kHu1+D
CdIo0CwSRYCN4H2R/uw45ZLIIIAjCNCRBqZ2Ewi8UicYsxKWISC+7o2OzzehAPG6hCIkhzcnG1gA
Q9b3ABJpmK0TmI+SE1A3CxBGA22jFJcftN+jDFlHG0AR5NaEAcJgK8kUGONPZClDx1g6QQ9KQPda
PCLSqc85JFaUlsYkm9R1lsqwQrGFi2LoMvalUBD4XhmzXMcwbfpyNHILuSrV4p1Yhms6wWF4SdQo
HTYKWNMajgL2+wBLmwQBgEHafVi6Z0v7OZFvEkh4zwyVZ2tJ3kvuzgIGwmhHqxrYORGIAmRJYsWw
y9z+cc7OFBO3ozkm13uWHXxoAiZbx43LUPSOAiIdoKE2oNF3kp14/lz5JpdwOTuDGtGDDrDCKFMA
brjOMhsb6OeO47vW3WNjBE68RLJJgOeyCXncPF5uDfK83JDb+BgtgPIAtU8xCyi3YL53H2Yz5ALs
bnYHRlWT+2iy2jrBkAEOMHZjwpJTfPHLBNTjbfWAOzi6sUDW+byAc3/c3CXfudwNTncJrB3ettb5
ifUcclsnoPD4xkmiB0K6+XSg0Wwc40KObmnGu0SoHGHj0MakmLvX3UHOeXrE2Zh3xUC52XgLOkMC
7xKgd9kmJ953ySUPAcp/nuXl/jzGls5uz9s99ybROZcJ3/e/Qz7S4lp9zlvPa8tMwPWyt9bkmV70
n1Nf2Lvncu9l/iN63z8/1cPne29sOPpZU2DzMh/IaQSgoaHQTr826wlkMpUsmyn7AgUkcQSUSAFe
PmD/DNB/dCMBDXABp6J/+0UQCbA8CUgBA1iABxhHDTg8EtCAAdIaiaJEE4BlsUOBDRQ7dJN/VqWB
HDg0DLCBJ/Z8+GckDgCA/bcABtgBEYNALdiAD2iACNQAFehgNFiBAeiAM1KAI8gAxUEfBSiBXAaE
IggBJHgvTBhHJViA+VeDAeh/LohlQYiDJOaDCsiAP9gBOmiDWWhVGAATQviEE9BA0AGDS+hBgoZ1
aMiBSsiC+wdDdJiAlmYBEwCBNLh/PIiAP3iDEViBcQEAY+cj/o2yAAdwJYq2dfRBJQNwASTyYjdh
dDiBAAnwFg1wZoeTEyrESh1wAKAoKyHyAFBzF4bhSlTyAKFGEy/XiT+BGAwAiqJoK7I2Aa1BiEKx
b1i0gdu2ddwFF5ACLKwoGBpQe3eBGEdDJbZRjI8jH3ABXlSCAVSCicVxbukBKzzzKR0wKw4wAFfl
E2fWAQOAMR3geN34Ga0SGPqyjh/2jkSCFmUhFvJ4FfNIFvZ4FWkRFvwoFfUYFf7YFP0IjwTJE7Dl
E6fCH/THEzbDIGDWIKLVI8slFKNVkD2mURg2FA/JHDiWE5TIIYjlE8vxHc4BVVBUkYykGebjWDZB
T5iVkUbD/pKrNl+4gl+kMWWksZFt0ZF4cZBOghyw0QA0mRM2KVhKBEIn5JEGgF6kUSvrkzD9xUgP
IGPoAosWWTWGlUVYhlkbdhpdiVWRpR4aAADNgjcQoAFndgADwABvJlU5wQH/ZRNQaROGxlbFpmNX
qVZZyVpHcZendImRVYAcMpEfGVZ0AQH8dBMI8Fdz9htopRMlCRRh95VURRgTiTgwaWWtJTI+ORrw
cic+oT2hKEsDZCZtgRPjVhoPVRtkI2tYlJQ74TXD9BN/VBkZQhPcCIYhhjAc0Ju9KVMypWuu4pu/
+SWBkpk18lAHIJatojpU6Zys05kBFE00MRiwApsQAy8D/pAaGCJHRYEBqJJQQhEBj8lRokkaZSVD
z+N4/+QTyoIvsDJISTOfBXAuKMMnHRVQQjEgkFJWrkIrfxGOryJbBMUbAOAuslNNebmXE6IsCSpH
YXUv99QomAYrc4GSFrYry7UBTFc3zmIUuAc720IArQEADUBpkPFKoQYaM9EtF7ABB3ofOWFCTJht
zckTq3GWBFKeeLFaL4QZRgOh87kT+3MnBtAA2eGfQ/FrmCWdlAEdanMzIoQTcMZJJIacsIehOYQY
Z5ZIGqR47clJAgMBEaAAVwMbEuKSqFJUDRBng6NskNkcNzFoPEGnQ6GlLqkTcrWHbhqkc6SZGvAm
Y5eQ/oqjpPrDk7/hpGmyKWvyZpazUnBKGRgQAXY6JXfjHwRwo4H1IhkCI6MzQmfKFjuUJ5F6ExPg
AHZVGhiSMr5ClwdwT9pmFJZYGSuDXgSwKZDpl+BEACv0jh1JYlp6Gg1ALh+DjGGqT3N2ALrYkkWR
mFIDLS/qEwWAmAQQASvSUUJxXr1CAFSDQpdFNluiPvUZikBKpUqmE/wEE5nBHmVkorMSXOxnMzbj
k+h2JeB1LZCILrp6FB+HqPVUhT0SrLlzWgYGLBsAPQ44o+rDN1wlHMahRmwEKzfqLlvHcgCAKTYB
LWt3Tz93NI0DrhagLFpDpgWwr0+irzgBAJSpE4co/pKBoZMeWQDd4yNBthlL9Jxf4xMEKJg4IQHN
UjYMgDeLyFUfpZrlcqow6BP7FjWNaEMSBAF8gkl5hWcKwB5WlT/YUUbccxPupBaN02FYB048uhMY
sDMpVROIJDFQwa2V0kSwo6h5qRp9ATEjQxBDM3BYOhrqs4AccZk5sSUbcrCdE1OvqRx8hWfM0ydg
x1svUgAJICS/gz4G8FXieSBwiyP+emDOdBdze4mz4bfbRbB0hYmf+1xJNgEbsEQwdK56mrfbkrmC
gqUMqpqwmxMNIACKKisEIABoJbAXGVrghLO0Ybo7wS6pFLt8CVqedZWCK4PwITADkIkOVql0ywBM
/hm32Ju9vDW7PhE7iNIkibayOWkyQuo1GOAbkuJKgVYxb8Eb/5Sb2hu/8nsm3DsaMHunHaCefdIA
eiEBAqAbN+MsEwAA4/S3EuBgqAoAmjq8uOG7YSe8+NvAPkq7zwG79bsZNTsaddNAqRlbEwDBp6Ed
tftGQ3kXIxx2IAnCq+G626LCFzy/MBzDMjxXL/ykJxwvxyWRxKvBKqy5uAG6ZMvCiHLDQxydktG5
SNob//WnM9zETvzEF3K5UGyRNDTFhoI1nZYT5/m3VUaQloGktou2iZKk6jFe+pIgiDFCdSJTRPyX
o4GhErDAYirBP2YdQiyTEakTNhlzOnFi1lJL/tXVxUQKxPUEuxiynN1FI2DTbWj7bXpxXqAWY6Nx
Y5tLFzyWYz8MX3cxZD0cunCxuCerx0xWRk42NlAmZToSYKummXEBygliyMJBLAxUKYdhIzfEdoex
dmX0yC+0K6o8FK9RY152JmVzIyXhyjjqOpzGXz+xxaVRaHiJE7KkZYoZYjOScA9XyqTcaynWAUnr
E8XGdESRZQxjb1t3Z9ZRrVfFoZURUEFRUVxlZ44DAS3yX1x2cHVXLT4xVMRnbn/HENKXbPX2eq7E
M/gFL4vnIHnibw/yyzUhcLLEeddXngX3elKDE/aWxTaxcfocldjaJUknEHASHi/3IGUDeSYn/jUB
8mABAjmttmywVl01lzVNgnNDY3LNV1289noREFJEl0EhknK64dLifBPVSiiwQiLJxh9bqSBX13uN
tnX+8V/IQc2nQQALwMw/PHd410vAh3a71s+21kvKd2t6R3zxpj5WVRsFYiEJTTo8E9XHrNNLJGxg
UqYEp2cf9yYmgTGOIXpa13W4dnp8ZgC/A4dpLXhKJBvkISEnVnip1tDXd3s1+HnCNyZMiM+/h3eC
19TNNtY25x9bktjM13Pc43pC15jTd3dGd31JB37iXGpoS6lYJnVLTRDh126GzXdmpj7QMVRZxroe
KQBLmW2Q02HB5IpCgroMcDo0cQGQ+y1c/v15Xs3ZOC3W71Z8nU14jNc9h9fd5Rl7ljcfshd52td5
X717XDPeue17oPfXtF1HUbZ8Z7bTqAcfWNbdN613dV3O+T17bFR71OeAA4F7eJd9ezfZm23Z1y1+
Yw148lbe9A10zjd4shF96CLgrG197t14513bGcTh6Q3bc4cZ8V3Wl03Y3+pXlWsTuqxD2vh4eQMV
oRpeemQSPYs0a4wTXqPVGkCnU2uY4cLMqRtw/aMAzWkYOF4ZAkU0M2ohXvPjimenXPS3XCIuByJQ
SI6aSW4r57LkFnY4O27UiGanFoA7VX6JIXKvYMggZ/63C+ysDjKVWvxGF+U144gTEbAY/oCGEw3Q
ydkoGCvdExBAHwFyGf6RlRrEMCMUGHrSAboci1pSIJRmGNVkABHQ4jtRskFxggYQGVdjnVOSvwJR
6d1IItWqPrrjSuOVvzRirEJuFBGjF5YyLZMqvrFJaTQGIy8ksZGi1T8BXiN0vvNpJJZzvCiLjKdO
jo+XQXQxjlTCPH6BKRigTmDoGMc4pDR7xzNGGm3skSJsxdaWwlnF7aDDmUQSknn8xgGrGkkRJvc4
Ff+Ij2ixj/r4j/Ue72VRFmeRjz7hwAf27erOXoacKVwjVNTr5z9HY0MTNBgr7mdSj/1uFRO/FfhI
j/4uFjnRj2CRjxVvFhwP8WlSwzcB/iAMRWEyiqoOxsbNjJKxY5XumWk6TBnCHGin5bpeYvNDAfPg
s3+qgZP2++3rYcj4I8VscTAimVSSKMdCcWpl1CO1iwDb2aM3oev01clO71pAeU35ZhoPo7xg36QL
VZT8Wlov82F+VLl5CkAmW/IYaiOELPIGme6TtPU5NpLRGCgAbyiagTGNUxQOYvWSkVlyiRNzGZV4
rBN4n0yRyV7mfr9LCstOQpNtHx12fxSZSMslAsKNQo09QSWs4YoDd5lxWSsymz9zeTs60VysYsLI
TBdxKR0lLF9GnFZRfRdtX82E1fnyE0x21SZ93aebAZcneDnZMZdOzxa5/9DoLPfF/mP0wWIUXIfJ
CSJ1HeLzJTKRZfVmcfxLsiI7k8GEE9OzurMv3auzzW8U6ouRyUvBy9tWNf/Jmbn8TmKoh8FtbFES
OTFMgDQjVAUQDDoMJFjQoEEIEg4uPBghAkOIESVOpFjR4sWJFg5g5Ehwg0ULDQomwHDwo8ENCDp+
fDCh48STCwtciGgBIgGODkQaPHDhAgEKBSFoiLiAJkyTKjsyKBnzZUSnT1FKZbghKkaNVD1OJajh
aEGrDCk8INjzYNCFD9BaXIthgVaDNhkeoLCxoAGKODE+GKC3rE0FDwk6qKq0olyCDRBf3KDg5Fq4
BS+UjDzQa2WCGL52vGDA5+fN/hEfCOzQwMEF0x1mdpbId0BBBhCOMqBp9uIF0i83LCCKGSxNDAYQ
oF0AgCYCvxQ1FIB4VO+BAQsUBF0guANhg6gZcthu0DD3heAPSrDue6IGugDeXrBr3j3ErHDDDpxP
f8MBvJYTUOg7O0L+Di6IgAALmJOMIsMiCs0g2qRasAMKlApuLQIuSy67gzA4oAEJIBtogKD0MsCp
wAaCgLIOJCCruw4IcCiCBlYciIML3ppxIAZkNEi8AHc60D0NUCQIAQYAoO0nCq5i6DLfgnRwAAPa
e08D9I6bQKEOBhiOMgcEWICArwgAcCAPI5oAAiXJrIiBxSoqE0LDhiuNABAF/jJwoTI1IOAA5DpA
oIADLLjAwAYmGEDIDqYzcAIdI+JOgAYiXQCCgTDgwKUdB2qAgQYQ+Eq8GsV6zyeCJihwIAAgQMCA
BKariEnMNJMqvvd4inCBCQzUsoED/IIggQAfwgCBB9rESAJK4cKtN4k2uJOgBLD084ACHiDrV46W
GwgnuggAtCAJgDWIAgeMXMBY7AyS4EEE0iyIgjc7YLNWiwygtYP85Bzo2Yo6BRNTehe6YIAExK2V
SrqIzPVDPykYk8wEU3woXooo8BFCrSRw4M0ELmTIAGvdzJBQA8BMVFqCHoAAsQv07CDQg/zaYKiF
pFQTzzcVy+g9DFA0gFnv/ibYMAJ+DYKVIAYiCPTnCC+S9al7a92gyob53cDkdyMeEq6WEI3Mggj+
5LeAqDYY0WuGHiQovgtapQDtzHqDeTAHeqKgAEQ3bm6hiweyILeJ1NYKA6IkUAABuDsuQNGIYB1O
AQdkS0zrxuGuiL2A76LM5YgwKEACyrtiAOinIDiAdLi8NQhMzS5AAIGOGZiaStprr32BBF43yqfe
LBjxpbkH+q+vAQSAkC43DYtgszPdxUzfiSZI4GeGkKPMY4ERaMDbBVbEAKjQ34t6ys4Elwl0MkE0
sM0GKJaozd14S/0AlTvYgD3nKTKWqpYHouuApGnAWnwSmvnO0jQNWKcl/gxpgPzgg5WCUQAAPjqA
BFDUsw5IzyIFiADgCqIBs6mKAUlCSdMs8rSXjO89+VuIAUyYKALoJU0OwQjqDgKB5WGkZwXAyQJA
hAAb1tA38+mJAIxTwdwY4CHQW4hcCmDCDTQIPoyymdEw0rb9TLAsDvPIRzRYEQMYqjeeQYCrzPYT
tVFgAZ6yCAtrUsXMPQUBEigaRCKQLPO0DQLukwABgjMQG8URIxF4gLiC97lAvsxtEXEhrzpzqLzs
KyIDgCN8ErAA/PhoOCAyyBcjqRoICYACCWBAyfBlucQE0TwqpAgKx+IAuTggXR04GlzctxC9NbEy
EDCNSOiHyqfcciEY/jDNvLIjt6+8JjtlpBZEDkA/u/DJZglc3bYmcLgF9QV5+psjZQxEl/xEgAIu
8eRE9FIA2E0LVQ9AHGZqiZVKTmQ0A5kATSDwFgP55YVaGadUNCBFQXoEh3dsIAMM2qiJLMCgDFDA
A16Ex1ENwCXJURFBPle3k2CuIMFxYaIgOkoSMqxFLhnQgFizEKC0JwIEU0ACbLJGA9DxhxbRS4ci
pp4TPswgqdGKRgNGAAVUxjRuPAwCABYZZarSn0O0CGscyZDPXcx1DvCLAC4ZlBxh6D4LuNu2CGIA
CBCmaPzRZlwK9tI+EuBLwbxpIiWioZVhj6dEZYgFwhcrYVokRga8/oiHNKAA2UmkQiiJIX+Cuj9+
+qZ/VdEAsWISQpR1oDoduOdXNAQ9P+6nA3C7rMMkQEePNHSz42HANgsStQNA4AE6ZYvBPhTUimgI
VwAI6h81tdr7bRR78IlnQDnCF2AOcViS819dnEIADvkWM/dTaHDlRVWCqPEk+fuIUSE1EZD9hyEK
QFm40iaAoyqXIRqajnHtqgCXNAACnsHXKDcQHCYqSACqo1duMcPXpv5WICFhwAAUYAFj4ZcjAhaL
BQ6HFsJ1ZAGgHUhoFtQng9TxIAObAGs7kICFDcS7FnGSOwlsEM9FqFADGMBDYESXTlX4Iqxs0ocr
Vpm8GmSexfUU/uq+woAF5JgBn/3sla64AR5fSQI5lk5kA+dchgBgIxsQAET3h4C+9GYDyrwcQ/ZT
gAQQxnC3QTKHXVyQnrCHJpzarLOS9b3bULK34mWzfg+SuzbHuVIbUQCV2czdAyiNAOWU80sQ+rU1
R+adVLEzVRAbEQh4MINeizFGGn25Lh+ksaU9i3sQG5LSQABQsI1tpJXz5YmgkDNauqt8PD0RSmIk
clDCUK1AHTjfYICut3GPAdVr4coJ1zwdTmGg+wwRVuOob7iEgJh+fWxkJ1vZcWRx5wYwyz2RyYVr
GbRUtKuasC5pXzDSpZ6IgoBDcyTcUFOsUoNpaZ6dWiLV9uer/v3m67SQ5gExFIBCepOcWVPkpKn9
swZYZSgCGNl+A7EX7BCLXqxRJN8VWXizVuiehisc4hOHGryXTcueaKAvCvCYhsT5LO4WZAIMAKKf
FlDHEl1c5StnuXKbXRl2v4Q6pmwRpagnyRYVhLsGch2nE9WX8HZk3ClUrLp3Zp5HO83oEIn5S5r+
Potf/CcHiEmuBvCRExEkOfsZgEJ2i14IBeXPLSd72c0OtVLDnKlGFTmlXyYXH57FoZXcHlAIIABc
Nw5ITN37rlcYcYhMjeK9juPTHQ2RMMLOgA/IJUMqZF+OJP0wRXeP5F9c66Uvyd0QEfWACzABy7c8
bLY5e+lN/n/6gL48MpD/WmWG7iB039fcL9n83tyTYA/vevMXmK+EYV77Skcm9CJDOuWLf3zzYDD3
sd686lH/fOhHX/qR+YksrQ9RiCw4N3VZcj67Avy4wJhew6+J8X3z+siPKvML0QD6ndb8qBfEAYm0
rXSy/P3zu55e7l9xuWOf/9tbP0kDP6NpvrSbPgRMQAVcwADZs6AzD8CrisqIwDa7isa6OAqUwNtQ
NHkRHAWYPYmDQAd5IgoAMAAjiJ94iHnSoHNqGsx5jq8wvL4Sv1rhP7aQNNe6IgHEk8pjiMazn4/A
jYUAqM1CkQ9EkMYhwI3avZ5AG9yznydUvs1iFilkQLL7/isrzAnIGIsA4UA2yUGCOMKJOMBlG5Rx
mgA09JAC0ABVMRWvUo0JUIkX9J+veK8LyEAUrIwvuxKfsz3FkrQ+dBo8nLBa88EtJAshPIgv7Apm
EUOJAMPf4LBAZL/M+4n6kTEAIKQUSYDRIAtOLCQL4ESdSBRrKTnLcIsdjAAJsMGIkDw+vDzfyJNJ
lAijCJAdDD7fCJ0f5MILkKWv6EVYMhgUcsSIuKv2k8RW2j0CkKWFyLHemIBJIYgca7AFSBdnPIgF
SEWB863Pcqs+w0KMIMLKiL+tmQhIvI5DDBBfREFZMrDtAkEy7ByXAEcNu4BtdBCg8saBiJYOWEFg
aUE5/twIGGREB6qIBPiIbCwIVVTCcKOcz5rFcelBo4GtRJyIBlmsyFAKGwRDAfIOQww7CEHEdWyw
duQ0KSRGiDjHBsO+JhIIepQsdxQee9s9UguYqSlIyrrHCwOkC3iAVeyAhaQs4FuQlNjHglCLFNmy
VowQlXyK0DgNiuTAIQQOENysWbIyC7imYnyzDOlDXVSjCZgYkTwNTUENWDLJRiQKcfRI+Bi2Djkt
l/S5c+E0VaSlxjqJCwQJu7CK+dAecTGcmNCLPVOJPzqn0PivHLGYz3IXl3oAxYgNC8CVOFQvC2AW
LhyI/4It10LKwKuOUTrKoHjIfbShsFwjhjCKDSDL/oOwgNGIyeyLyYociHahJQYhSnERF8NwC/sR
F6doCa6KgEDCgD7cENncR16MS8xEQyIhiIQYiI2RzN88F9M4iv9qx3NEzGIhgBWJoq9QCq7qGxdp
ACGBAIABN5eMjaDYDdesy33ES4gUGAEoANaKQ+FpAAEJKs/QkAi5gKbJzwNAESqRTrVYMAqASJfS
ib9ZGcnUHrVwDKKgAOBEyJhEL8HgzA4wlt0Qp80MTaVESXqKgJaaMASNkQL1CKJgTcXowzskil5M
URACK/sMw1eEDQOjkq4QF/QaMsxEjWLxTACqlD3iqiHDNN3cyZdxgAY1TkREzkRRThvJUecES2iE
/lA2mc6p+S/TqNENSABYwdJiKYCh4FELoIzbJFIb4aAGUEubIE9o+RtaQs+efMw9AkqFIBzHsIz3
nLD4rCMHEJe/IoB2uhug2IDtMYCSGBQX+SC3CIketakYEZSEOIoDldPIlIDJDNKwhJAOsgAEhS30
0srGQ50MLdAOQ0rRTJSnMRg+BMMWZVQ16pD9IAsY/RsLjVV1hCXIBCuyHFA0nI7TuJ8UjYnJSBo1
ooAOZdRKrQuB2I0OmY4hFYl/atTJbNQChdBzOc+V+VQEeNJMRUfopFJOPY09O5d29Myg+oixqNIv
lQB1DUXMNNbvpCXYQtMEXVOAcSn7xAD0pFf0/qRTIERMWmrKCVOzhfgif8w51XBBgaTDtXHMeiVQ
Bk3W6Ug0TqXUBaXMBZvSTUVQYpVMUhInXCkPj/BMXNFRtRinIdOMdr1NYw1RjLkwFEVWAp0OsuDX
lWHZsfwbcUqtxwRZNPzNKj1LGiVZeE1XVyXWA0BSiYXXmEVPiH1UAgVa1mQTp3XS5HwIkv1ZcJ3O
PWOTchUnTqMAin3Uz1nZdx0ychGUeYURV+UuhbgScqXUWUXPT/VUN9UAz7ycmtw/h4XMp6VWqe3b
bFVO9ZJSqeVYn5Wejr2S0KinxTWcMynWIW1NEu3YliVa4KxYmW1WLrTZyOxVcEXcumC8BDXc/tA9
SxuVl8gE2aJNNDEl0KRVC8udXNpwWkcFXGtt2sG91EpViKzV2KD9iZELCVwFWycR23YtW2TF0dat
3XV13qUdUo5dmbnFVODV3H7VN1J7nW1dCE1LgJ04J8miFGvJD9LT3WSN2KjN3en93Es13Y3tWSn9
WLAUWdUl2nDBX64aW2p1VgXQX80l0ZntXLb1W9DdWFyl3rAq3W/d1CyFLbJgE/1F3s2tC6UdYNrF
jSC93WSNTuxVUMLFVAmIIus9XHEd3iw1V9mkYLJl16P12clVjBZW11ct1sxt3+qFX3JN4BgbmGeS
CNfhk6BQmtQKEATgE/58pgaIiQaYNniB/hfYeWLQi+InhhcC2KNxghdDqWLQAxEthpc+ymJ48eIv
lijQAz1jBQo07uIqhpcm5uK6KC/+iBA5JhcnzmIqFuMrbuM5buMwRuM0FmPQKy0xhpcD4CrQ++Mq
LqVCjuM2PgA5ligKcJEvzmMo3g8pnmQsrmIvBuQBgWNCBmReaeRDHqXhsGJxcuM7Bj1IhuM9hpe6
Aas23uIvhlA1fuJPXmM1ootHlkw0rDBf/mWJEqQXiokgiQnley9VwomekTWTICqccIqqpAgDmeZI
kmapSLmBi4zkENWF0wtrpohRLMJwxpPcRJtwBtFtBsKLMyHgHAiHfba3gzLZNFSo4o9o/msRQXmN
UeSzmGlSsFqvBquRB6C6jniiQJEAgSQKQ1VnjMAJDMuu/PAJBTAdf14Ibe4hFbSTN6wIv3jBj/jP
d8aIzxsOVUFYvEgNh66IUfwJMSEKAhkY40JYiWgafVKJaKbpilBniB6nf7QmXklNBUCNn46jfUqd
ytityCgapaapihHYMLRfuPA9qWhqWoIXxruIcW6OqDtquBhpsmM9uGDFB3K1/8tC/ZmSW/QIJeyK
SiRHtDa9AJhruh4Iuq7rDpjrvL7rANhru77rvyYIvRZsvi4IwA7swB5svy7suEY255MPvoNsqfGN
uT4JvVbsy+5rxF5szTbszlZsv07s/s7mbMLea83O7NLWQBFc7eWKwMfupAFYkWg8E4T1CxkECf2r
Qcrm64/g6wDo7c8ObuDGa98ebcz+bdCu7OPeAOUm7c1ezXRrMd3DxxdxiAeMN+d0kckSzMaWs+MO
becGb9D+a+YObs+OiuTu6++ubNMW79HubjZ7bRnbiQR4iHtC2EKD74DybeD27O9GbN52b89miLuO
iQBf7wLXbzmT7w9ilgsY07VZjJijgHAWFFbcgPAia9xeJQWHCPLrnLW2jLYW8VmBa/PQGUcbO6iA
amX7H7MrSo6YTYxonw7PI0MN8Y5A8YtgFI7Y0tKb5JMKaxZ/s4Wj8RrHDAZ3OvPR/vHDuEzGyEEN
J76nOAAVOy2eiPIAKWeTgHKKOMgZ/EG4qEK4uG0vK3FBch4mVw4nvwj2pA960XIw4yKwuHKpwENY
4gqJiEc3B3OtqA+1Y22hM3Hz0PPEkDxyKT1qWbPgibMh3ylW5PEjvy/tZEnpjggvv0E+n4g1x/Kj
ewoXepi2oJPdIx0OKPVSN0jolog0z4g1pz4cJ/PYgr84eq9HnLUxI+vGw3EQ0wptAcoGQ8EY2jwQ
IggeIXaJWMvgMqYTavUxh/PA03XBqzhk89AuXzgLZbm62Cy78BgDSwDw45EKSpBi94gYxQhIN3dK
j3Rpz5xjfMQZ9JOX4NKbeY/h/kMgTiLBC8CWUPR2BykJ8eggfQWYcdcwSr+lQzf3PKW9V+f0YZL1
zBHrpKC14uwIpRjxVuMMUUIPqgIAAJiAf3qLfcfyBAMPCwCAAjh547iRCdPHAOkcln+fRr8IXls9
i4f17FiyYwsVjqDtnU93ZGuaYWEAoQEdDH9jBVCAvMMIDriQARj4ssxxUCN0dc8IQZd5vupFJFsL
ndchB8AAhm9FtqKlTZkAF+mYSRYAu3qAV7saWi8IUz/15hi26NrKAXt5/nl1i++8K6r6Mp+I5kxr
gqChbEku3ZY5w8Cw0YqqXpH6sqiwaCeIn5QI8ig/K9PypInu5YsVWR9EuBhq/gV7NcY36tABqrtx
9pcZGJEVEE2Xe4pYII74+6nXQ75/FQFbS10Ci4RnCK0Un7BHqZwIRO0hG6BR/Vp/H4GRSr+vJ8z/
vele94C57QMsk88SOg0o91iEiAdQKrbzfVVDqP+0S8mQ6lJR8XdJC8sLlQ/nPLxvfsJbNg1wLfaq
mKu8iJiHi9SCa6vGpfmHmfr2iPkHiA4CO0x4MPAgwoQDEWxQ6BAhgocSJ1KsaPEixowILRzQKHBB
g4EHCBCQ0OECgAIGBm7AgJGCA5EXEs5U6IBCxpodIkTwKFFnwgMMOmokoNFBTIQHLHRQ0FPgBoMO
GzC1CLTDgqsXIwrU6jOh/gYNXx22HOtQg8uvFwYcaNuW60QJEhgIZFDgQMgNABAcaChQg9YFUhU2
wNnhQNKDVRXCtbi4A4UHfs0KNExzAIUDF8QKNFr5oeeNDzGUXPn3QgKcC56eNEmTweSKlgkOzkh1
4GPKBzGkVZjboobflAGP5ejzAd2DyA+GdvhgQG+EGJIfiF6xscbpuitiQLDAcujmCMUTLCDRAQTT
J9syXT0wsWIHnBFySFhfuoKB9w/uT1hB8nYe6UXXBeYFeCBGxnn0QEgnIUBAAi5FQEABljUkQWwM
TGBgXROE1pFmCVknXQMjOmQiBcmZhWJHGyQwwGIDNEjeQCNqwGFCA3Qm/lABFiSQAFNOvReUQ/VB
wACSEPCXQWVS7ecAA0D1BxV2Juq2wXyVwQjAAuthhCWCHYD5lYJhIhTWAbM1AAGODTgQ2gUPIHBB
bB0Ih1CUFd25QZ5jzYabAIYhAN5AOIp2JmITKOQZAS4ZAOEGDbknZm0SKKnQfaGV2UF9Dxh2nwMN
atCXfhAldCdlvCU0KJdeXkQcgrD6dIEBGGRppkAGTHaBSQNgJpADEyYWQQJ8eRSBa2MxgKpPFHB1
AQGWFUBsBzQ+NCoDFJA3QE+eGZClApF18EBalkp03wAKLKCAAorqd1OpHTBQG38HJXArrhIVC8AD
BlgAAADM5hugBdgN/lxrBxhMJgBRYkLrrF+FqQeVYw0+VKdDDFg5EcaQwTVoB8EVIEF+1oopIgIN
bHiYAwYyusEFB2TZgK8DmTtRpgM5O5AGU963XMKkCnTfBhD8SbGZGGOgwL8OIPBAAuFe1DFlVFvV
8MBouoSAhwIJkMACE3RZbQIWe3yoRQw9JDBLfV4k3M4CgcyABBQUMAC0a4NFwAEJGLXUAWGrp+1V
CUhgngSsVcSBBA847i6nEHh1XwTkxitQA17ZiauqnWXWQQJv4o2A1BXJGuDpGm06cAcGOPudgQMg
kC2HEeTHswARWE0RBiXqpsEC+IJ2asMJ+NuAQRGMjREGpv1tt3cH/kmQgELQ+qo5TZdysD33Kj7E
PfcHXeA96w+NNIBJMTPcAchYCaDRAwCXvzbWrLvund1eg90Ah8R93jzwxqIBjW1naWYbHkJmcwEK
GMBxIcPeaJx3GGcVRnrUO8jT9MKuo+kIIRHwSuJ2JxAAncoBIpyf67CGsEFxxWQP0dABIJCfCyxv
fgWaAORwhSYKDCBaElTAoxISN5EIhG0PyZxiipMACNypQBTZQAPppbczcasDADhAAWaigGQdpHIJ
aAidzLOUhDRHAxHAl7iSqJAJHE1MBhMi53rjL/gsZAIGuIATr6UVBkzIAAjAQMEwkrqMrO5gr8tf
wkCHyIMMcSAP/sihRqLSxrFEBQEaiA1JlFKnDRzAgV9JywUs6cZkbYAjbZzJGMfjSOHBqyIXUNxA
KvhEFFqJa508HMcSwkcCDEBJjSxfIfN1RwksAAFVPEjuNkIAraRxLI800wUaoLJqiacAGBtAAS5l
liFeAANIOaBDUlkZC5ineTaB5EQmcBVvQnB+A1lgdRyCgH/txYVKUdQuRfLGfAUzTGiaSUPIQ55f
6mwBJ6SIA6QYoA2ohGvd7IChxGRPtClEAgiAQMoiRZHNCESc4+oXRwSQpVY65DckfCf5JjLJicxz
IqqawFBqKQEJ6nEh/fJkEfd5onZO5AICoFD5oNgb8uQQAgAg/uhfOiBLAT7TTJmESnoGsACQDEQA
2pwlVNQFEp6sZaUK0ehhHoPRQTVgTsDyKlQm0DAK/CkrGREeRTz61YZoawBwHRSjJAKmmClgLQR4
ilGRejG4OqZ+AwsR+3Q6kEddUCJuM4tbD0SABjY2ok0JJbuixi4FaDazX/xJSi/iUTYegGRPU+hD
4qYBCfTGAnRMGE8zsoENMbAiE2hAPBXitokmzDtqlUuhyurOIhoWVw0QKUYYG0sK3G42nvrKbIC3
saIYIFiFOqhE0KqRh05wNThx3Eos0MG3xc0CyXpuQpSnUkJusFUdnQ0GZpIZ7BoAAjU8CFoWULBw
VTOQF4lv/nGKG6ZINYCwCqkQXBIwgV9phaQY8Uo0YekRkhygJwuerlUQpLD3Pu1wFEgAURB2EQJM
ADsQ4CJ+CZAeq8VWMe21GF9CExaCKBYhBoiA92YLFU4awABpUohgyYLhnhIgocPFCIIHYjjLHuQ2
AYoZOkdsTQwgJrRHjisDF+BHN6XlW00xYgEIcLsOOCDKB1nw+558AFZZLIYTE8gEGksRXyVmUEKb
YIuq99Mhbydm8wtOUUq8kDyu9GYW0e5OlloRBo2kMwgQsZ8QxF3v8EUCfEtM39gHQX5B9AC3W9ZE
BvAoGaWWkD+iAADaXFuBADjOF5nWA57ylu+gCQGBcghz/u9lEQCTScAIgplPJpOACBionTxxjCAR
4ACeTgAA2PQcOD1ixAcXLAJcS8AjK6yi2UbNzDwqSJpmF1vPMFkgbHkw6SIAABWlST1oIYicJ1Ih
ArxPA8sUAProlFuJVAg4LS6pr68sG9JghGSI9sgEIJAAzR0JogK/CDElJ5IYAWk3YPMqNm130YVX
hNwXuOpBRI3uYoqXK2mKFkIEbRFSZ1EBy17Ki9T67/n1kyIEsBgBQMKUsjVgeYM0y7TPWmqzaAAB
XKNAuSKLoKBvJDKzEx9nxEmeUILEZAR4gATSJCcLvHlRuWKuWRHiq1/pqVgWoAAEZDZBDtmKxiPm
0c4i/kAUADht5ryzO0L8vKDkMACbf9xAXk+z9KO08eCv+jDfvF2ci5Q4dN7mKPs0RRPNMNQ5BZiA
A0h1gCtKB0cMSPPZFRD2kPvx4Jvy8QSd13BXW4TcDKCeBkzjbOgciNc+qflEgOZIurhMZwG/8mPn
x9ytIgsCBiYkTxKHJIN6ZNk/aZGhCsIjCWTeL3pnyRXFgsflUaCYOnGXqOeCeSVZi61Y6xtnYdIA
40HAaKzveGdUPhD3cqfrB2FAtFX3+9QmC7dJoTLWBFlO9BLe4RcD3E4BXgT2AAYeLZDR/ciPIAAE
FgsESmAD4hFlQN5GfUvlBY3iTEv1dcWbhVK2jItd/uFGRBSdRO0IjzzAApjTgX0Oq/XIj7SHWikP
3/AZC57NQdDfBkqEmzxQgNFcjWEE8iSgdDDAfW3HpTDdRRieVeig3vVSaF0ehLwT6ViG7HyHvNRG
W4BOyjzIDlZYSHQd9c1T/fgIkJBGZqjVeGnEL/kgxxgIyGFOTNieR6zFj7AOBdyabgThgWjAI+lg
rkgEbz2cbkST3WAMA6QHMeEXvkHOFuLEvChEd4RN7/EIBMSEANBLHwKAVvjUU2xRdaXdV6QLQsih
RFyipfnFfKzJ/lEE7gWI/FEG8hDiRilHgVVEuVVLV0CThp0QTLhGB+KJ4RzJfGBAD2kh/oSSV2jA
/jJmokSRX0LMxZoRj840T/vZ36FhRyj9l28BQH7AoFKtWHRsQP4B3PwA23YcIcFUT2mhCt9cxY3J
D2SYiRNulJXARLyJiQKsCUIsgJIsGCwtlVGUDfaQhi2hx8QEISdx0Vww30bUzwZc1CFaRC1OBDQO
AMCMY8M8AC8xIM/0IjYi4lcgz5FhXryJVyPNlAOgmEl+EgJEAFotgKUdhECOyxIyko4MCjfa2DaK
T1rYpAWpY0wqxEbiUUT4kdGUo2lY01/4iuIpRiz+ToAgD3aZzhMaDoacBNl11FUdn0+IJRxaitpw
BwKE2bUgFK1UxI0pgLUYTlHCY0KA1UJlJZW1/osFCMBmCAVbocddPAgDZVEP7SRdls/P+YSt5OMU
YYTC8UqPrdqp4GPVFM2cSABZJkQDEFtjskT9LJJE+AqbOMQWzeXkiQgumg4SptC8+MoHic4AIMle
lKCeVOVR3mZC6F5b3Nya4BRusprjIIeVaYRNGsgGvOFDxCZQHOIDjKZCbBGHkMxvegQPWQCFcEQE
xMSRkMoD5NHVuFNWWkR45lJG6KbsnAlaMIAEzglvtB0lVU97qlWxRICt7M54sgTgiQXgnWNd3ty2
kaQjZZ1DKNhKiMX0yNaAfUW4KQAEoGNi9A+Ais8dIaG/Dd525KNu1tXR3ElzRkD7HUkDIEmI/uKf
iJZoiLpcc36ohD1YZirEXoiJodyJdQ3EinYmThoAwJjEgf5XalJEYlYEYhURU4SFAVgMTEqEf02n
kkqE7iXM3VDokmIE30BGhI7LkZqFgsXQAlxeP0apRASRPN0ncXkpmSpHSj1dmeaLMioKFIaJgo1M
mElnmiLiLG7Hjx5HgLTpuKTUj1FUnkpaiyZEAUSNVjAmRUzSHsLihzFPj2oklCIlhSYp64ipIS7U
Ww3Aax0ZpV4MJUHAMR3EpurVRKwJSQTqyfxa0oxFgbDVnCrEs2EEUkTAT7Zqmkocbq7JrNLqwFxf
1jzqbogcrLJJAWSJoR6amehpTzWqLB7r/qimx3Ypa01pWKTaJiWZ6pytlXal3bntxsBAq0RYq0aG
6lqGCYZRAK9EkrjWJbhyzLqOqbRBklQsjQQOzLYqVaaKTwRwZK7qKr/2q7+qaoWwFVsZ0UWpyFpE
BOBRwGMA2oGsD1Y8wL0uFgSExJ/ghNylKxyFCbL+hLfa6HZsrD7Giq9KR6QWoXMkxybqnWGMFzvm
aYhtoiUaSH1FW03oir2N7EkAY+2160/orD/x7FfhLM94K6/Cag21ZUW2n8l+RezlCsyCRQHApbPV
4UG4zvU4RJn9q9ZuLb/W6e8ILUGYBluoHRX5kGLoBNJxRGbdiXoKQMRmLIKArENwV9wy/is0ge2d
KiaFQgv+sU7ewqFVtQ56YAy24BKVJMsFwNQ8cZIGHkS7BGqxIimgUmaYRO4qAi1YgK0Q9trWdscW
VQfNQO0Ogg4X1VVDGJ1lCQnXri7rLqnXDgfY7lzL7MgDCIBf9NjoQmdXLKpAKEC/lKbODKfH6obc
Vg/m+gblkmvHZi657i21Mm3sss+qoU/rcMaN5O7KgA67KAUE1OhL2O2THS/cHojljsbynonm4qH+
rW7pCIQElBW+NEe7oFyPvFYDEID4tq7+7m8iitrzRhLYbkaRnllaNsQdDURzMACFUED2JoSQuKAv
bpfP9ln+is8E76zI+pO3vi7RlW8C/oFODlmjWLTU6MoL+hgAcg5EuMRQeuwr8mqspJ3vZMKwmXQO
6qTvtLKvhWDqox1GTeRNbvZLxniqVd0F/x4xErsTB1OSDNfIQ2SRRS1GHcbeTT6EAWxImmXHBQ9H
BTsxuepQF5fFr/GsHnZpIILtSpVSDY4qEnHq4tFw+CYv+cZRBtfx7f0vrY6a5iYxH/cx+eKxgMRK
dkkgn3XxmZhJGGMsWCAyrtjldjjyI4fqEkOvhf4Eonnw8FIGJr+TIW9O5dLxGftTDvsxKZeyKR9l
0Z6yKq8yKxMMIL9V9F7owGyyGsXxJ9+y8trxDQ9hK/eyL//y2+AxD8EH5zFUWFQp/jAnszLfJrQg
hTNTrULoHgEYB+Dt4N9mRPEy0iyDLwVz85/WcBMLni5vFyAziEDIKi+ZhGe8oSLzjKXmSzvjF6oy
coI2cj3P8x0r5jnqBHDxDBp/M65kM5DFsDd/LK5gYChLq6qOrd/Gsm7Q8gxXcjfj8hyD8zjrhg3n
4U8h8zJ3tEevLrSoS0NLNNBtM0UnYidDdBHlhPDWSG8ED+yK8kKrBE2QhElsAFz+kZ2QBAVswJt4
GbSUBH79s0Hni0CPL1SpRTjrTEH3VGj11W70hgJg7jXD8kK/RVvE27Auh6uRm6D5mbcs9UefxZiN
9UmEVvA5LlnuMeusxTU6hK5w/jX1eHVEgHWu9EbL9tmT7eoWa0BZZ8SGhckea46DoZRuAcW79S5Z
KlZe2ynRlgRMzlQDJQwQtZQdGQBmMoCPMQUDTTbPQPRRe3JAF7Rfq0VKNzWZzQZMnPVhC6UKL/a3
qnRVz63smLFZz2lpJ7ODicv46JYF5N9UX8e/0gpCH8RScIRYxBAGHne4mVdEpAlH4HUXN3GPFrdL
1TBY/LUgxbMXaxjWqnZM9LYu+QjPTEZwU4Rti4khj8ms5Jx6/kgNMVfREIAEKgpde0lY+zNJv3HB
zYWeyPFfaLcCnvZJvwd4s/Z4N5YNnzdLfeu/BZCPOu8lVVRyaJSgMcpXr4S3/lyFTuuvXBgmIuY2
MO+2QSiideiXgDcFbNtpiksaAfQtQjgOktAVHw0EknQFAyQGkuALg48FT7TzfX54RXA30uBXi49G
kePzgezTboc3UujEBSCFBYxZbPT4Q6T3qXLHkYPqVb8ycEzH+SILzuajkC9rgYv4ReRJ476jm343
I5X4k7+TlI/Zgq/4WTz4lotzeyfOqvAEQ5BMBAThTFpbtUHwsFmbdShAmHuvO5X5b6K5RaT1Q/uE
yZoxiZ9EnHfFnJOmnQ9Hnvev0blFYxRMVNBFV8NdXXdEfuPkog9XaDk6bkJ6RUg6ZSxtQmC53Li5
zsC582m6A0w5p1cErssi/l0sjeOSN5xNpVX0CNwoQENwdUTct123jk7kFy5yhdLthATgrFe9Eaxn
ckmfyQXRUKTPxJqbBVc4ockyuWrzOpRvOqtJdaczr1OHTFmjOI2ahPrmhHsnxLoYXUNYG4ypjbOM
mdFphaJjxAW9YBd15fzImUZ9+1HmtnhTBK1jaVI9hHYbjLHbi5sf22pHea9j+q+neHBDsqmsTUvb
SUigOb6f85XmRHV0sgNHh7nqy0dEB7JM6lM0xnNJvEJg1J8h4MrXxR5zRXobjMFAuqUz1wT0BG9n
OskD+3OKxcWDDpKmI26ERMd/BNVrO436xQYwek3DOEIMqj6V4AIsH2oo/qFBjCiDW/tBQIDi3Qvw
WMC8IJ0ExJkGKJoYvxOrDZ2RX5LPK8oEyOlDPD1nnQjHpIV15MbLV/xEqHmW1MSz1EiXuMiVUwDi
M8ati0tZ5DYGRMAEpPhNhA1rhXymM42bfH2dy4t1R4di/bZ1nJj40MUANSVWfP3O24qzB/iDAUxK
hFnDsJ6n0vdMkNvOTDukiUlWkP5M0L1EME2o4L3RhE2JrcmBC4Tk3I5OYcwGeFdZ//wjjkvHPH0x
OQTDr81LXsBf30rkk8+95klsaD7W33/CjE2XqlO4IL4gAkQHgQIRDHQgUAGFBx0uMOigQQHCCRMi
DqRAQeADCgsmLqAA/iHChQYOLiC04MCBhYodNmwYqOCChJQHJgxkUFJggoExBxKMwEBDTwgSBj6w
4FADAwgYOyywsGBghAgCNyRw+XBlT609LRTcKnCC14ETdBIQWCAswwMdzHYwgHOgU6VPJVDQ+bWD
gpMNji7lGLbB0rsdKBwU6LRiAg0YBDpginfDgggUsmrsIEEC1LxBt06QoGDwQA0N+1r4auEB36xf
EQtsqFWB59Adbm6tmnPxSgya74rtoNHj54G7tR7Q7DXhwtcQJYbVfCEC0Q6O/3r8aWEkTr0oLcx+
id1oAQgMGxgd6DUBdq0FIjRgfMHl0O9I515wwHcB/A7RB1oVyByv/q8uKACz0wz77YCKNjjAAMYm
OEAsBk0TDQMGwKPLrgC340upjSZCILDuLIpAAZday2uCqaZ77LGBIpusMoww00wBzrTyDLStUOPQ
KN9cu08lrR7DoL0gGXIAAsaaW622C5Rk6a6EhBMIA5Q2osCCAxYSaCkpVwLQqwMakEDEvBTq4Cis
mkOAxhQb83AC6yzMziTuehvtu/IsEK8DDPQ8Lyf1NGjgrPYY46sDCGoKlD4ILLggtb4w4g8DiK4C
MECtssxUq6uo6slTlmzTwCk9F6grvQts/A7IDv8C0S8JpqIgggVMNDI2FR3byTbJKOvJshldqvEr
HL3b8UKYHDwI/lLVtIpgAma5Y0AjLUlCc7eJmFRpAxtvM3NKvUyt6wCHqqpLylL7vAmDuw5wwKi7
EjhTPQwqis05iXSlK05aLUTpAtT+TWmBLrvNM7zMLkQPgwv0Qqoi9hoIOKVEF+0gvUYfjXSu/aZq
SQEMTMOUU4G6wusBAzS7j7CCBhCIAAkK0qCADl7uoAC4DjvKqFMBe6Cklljl0K8PA/OQKFqdivTe
jlbM9MVfi5Ixs2E5i2ysWn08kq9xJdjgTAKKjMjTeZXjzlcDILiWOm1FFcjC1SKrK7h7LzyVgnJZ
8jU4jwj106gSO3hXIwYk6LdI+oD7sE3p2kZ8TpJiHvipyULb/kDchCMvMzaF/9ZMYp5NU7S/NJNy
dK/SPJ5PzZJ3KuCiC5x8kqyMCK29LbQKumCtthocKPXyNqoLxHiJr5NoOGHlt65aTyKYAnvd3tWC
6nudjKMtg81s54QczjpHTTl2FG+PFgq945zOtC+lDq0t6XHrEhpJpcVM4tszGsGjgIHJ9M4LXRTw
XJ/GRYHiYSgh12mU8hrXgQksDnLYkdwENuerGpXEAhCYk+b217QBEgdnRfqTfAL1AAvNxQCJc9R+
MLMYubTOdWja2li8wjID2gxmacFAzW6WM+BFSnh4OyDeSgSR1LnKaEWL4LSUiID+eSgk17uScLZX
kVJpJDEC/gxf6YBUQPOFMHn3Wh8T8/YAgmGvI/6SILc4YyG+abFbmcPQuwgWQIWZ8G7EK2ACGUCB
BixmLj5jk0S+hsQlTrCCMNoAYzK4wT1JwJFRyp+gIqZCCxCJKClySqsclUKiXfJwNTLiAmM4oIu4
TmhU8VQqWRIqNAEROHrsWQB/opDkvepo1VEjGV/1RI6oqFNvpKJdBLhJR3rPS+4KVBdjeaXzqVBq
ZjtS+zq5Nknp8jp26skJ0agwDeYxb/DiH/aK+ZGbUAtDQ6Tlv275oT5e4FREwV8Es0MACq7xiYNp
5IUItEGpdW5pcqHAgCzpMwc6b3wW8GRpfJYY03WolDOM/uFEX9m1ZqqTMv6y5TWTyC85PY+jYfGl
Z3RGFWFGZHF37FodM/oZBdCtmMhCZ/nOhD4lWmeT1FSoNUdKz5TUSEluJOcd/flEwiEwphybpQH3
uMt2AqZoU5nnR+t5T7TBCE/71FM/LyRJlYoOfUtN1xE7aUl84fQoqipYizLFO9c5zEZtMYtkfuMA
AwjkLT+06PCYKlanhhRWcPooL92Jxij2xCnCTIAChuqRbzbVpXbc5F5p+synDlanaqOmYNVIP6DC
rXJTdMpjl3pUIpZTgw1ZKkb5SFbl5dIzGzAkZi9gz0RSxn5a5WAQL9I3ZG1VhM1EKycVWtDDDZZD
kykl/uwmcJFTbgUCCCgMoeTalPE8IGV4fdJvL9rUbD41sNiknCGdaNitCHWKCRDm0laKobq9tKWT
BecXbcrZ7x7FfxBIrn0pFxr0+pa0cxSnL5PKo3R6l52ADVE8m4JGn9b2nvTLp0CwFGCumqqx5myI
o0IHWfmi0KxpvO8TI+q6gbYMhzhkbKIa4Du4cJevrP0reRd83F1utpcOdghi8Ys0BawXxgSuFXzH
ykz31hSa4j2i/8wYUqr+tFsF+W9MSTvOcPo1MxqeqSyROuImwlaqDn4yhClnwZakx8KQBOdYlfpI
R572qyD+5F9a2yrlvhV2bP3KaJ4ku+GoyjUlRYAB/ghwAAIUegAHOMAADm1oRSe6AIUmgAEMXQBD
U/rQiGaQpSNt6EIXwNKJJjQBQr3pBCQg0Yw+AKgXzaABsBrShSa0px3dalAn2taylrSlC91qAiQA
AAXAdKkNwGlJf9rSwUZ2q2ft6EZPetEJWHasFX3sWiu71pDm9LBbvehnP3rVksa0pkdd6gIkANYM
6rW1BeBsSYN71tBudLut3WtqkxoB8151vnft6E43utgHwDaroY3reis6AQhIuHpPfWqFqxcBF6Po
xFGsFWpZfEs9OUBJ2bKVtoDq4zDzuG1CLnIhba1/A6lZwXqSt62UZysbH7lWNFDymnfGO6dyUckd
/ohyYMINmDXD2ZNok3G4jac4HOf5zbUigdlMCbFEQYnKbZQWi/9cIAd40kYQoPStYGAtPdHAXZuu
mZ4gQDr9SftACOBKik/0hm8njNt5HkM91z2GItuKn88yUb63nO5y79OEerJiij9KK38X+ls5ToHA
y13vmmIMy/zeeE/FHZVsBdtWSCR4z1M87up1TQIM0PX9GMAAE2gXpTl+FgoMgNKEsviBODXX59zs
8yK/ANpzz3aMyf4CuH+74Tvee5zthOxCWY3rzMI7PXueZRCgtAEIL/e4NwD1d5945wcwoQh4x/ie
v2Ex4bYQCECluhSWKIHM3oGIuxwCA5CJ7AM0/tcGxMYBZrnPOAvd+trTJgKEbtIMCAMkYACQbqLM
IgEc4KXybzoaoDAAoCQQAOu+gvgU8LqgAgA8QqLwYvHcagBcogAw4PwoTgEnQOhuxiw0aAIIYPky
hWU+0P2aCwEsAAAcwOo45YZwb1MibgEJwP/wovMOQL8uQydoYgIIDWaybCRSLPwCJO5KkEvQTjM2
7gPDbivYryd6DSoCwwj/71TYwwHWwi4YJAKSb+Jypt0Y5PgGh0jaL4ZOkD2yy4AQgEBgpwMLr0A6
jq5MqA3xzgMxACPADmdcYuM0iOJgZwDssCB8pwOaMEMmimUWBQPuqtAQQC/WYgMWL1N2cCd6v8f3
KKrz2mIAfiV3JKABDmADIOASMQIQn7DifuI/8k0xHOjQ1KrQVqUn0KL9aitmHhBCdHHkTgUDCqJm
NGDQkAQLJ+7QBkImDkACxGY/doyizMJ7jPEhEEBMFuIV9dAXMQIZD20hyI4TS6YANiD/fgcDDm0A
NEAWJy7RDOIB1pEAQhBz1Ab8AsSGDs0AgsIXQ0JMCIDooNArWBEIXYMAGmADBoAaXafzFu8BoIIC
Ds00YoMlFIAATK8cYbEnAgIAADs
------=_NextPart_001_004B_01C12426.EF04A220
Content-Type: image/gif;
name="fib2.gif"
Content-Transfer-Encoding: base64
Content-Location: http://www.trendsoft.com/tasc/images/fib2.gif
R0lGODlh0QE/AfcAAP//////zP//mf//Zv//M///AP/M///MzP/Mmf/MZv/MM//MAP+Z//+ZzP+Z
mf+ZZv+ZM/+ZAP9m//9mzP9mmf9mZv9mM/9mAP8z//8zzP8zmf8zZv8zM/8zAP8A//8AzP8Amf8A
Zv8AM/8AAMz//8z/zMz/mcz/Zsz/M8z/AMzM/8zMzMzMmczMZszMM8zMAMyZ/8yZzMyZmcyZZsyZ
M8yZAMxm/8xmzMxmmcxmZsxmM8xmAMwz/8wzzMwzmcwzZswzM8wzAMwA/8wAzMwAmcwAZswAM8wA
AJn//5n/zJn/mZn/Zpn/M5n/AJnM/5nMzJnMmZnMZpnMM5nMAJmZ/5mZzJmZmZmZZpmZM5mZAJlm
/5lmzJlmmZlmZplmM5lmAJkz/5kzzJkzmZkzZpkzM5kzAJkA/5kAzJkAmZkAZpkAM5kAAGb//2b/
zGb/mWb/Zmb/M2b/AGbM/2bMzGbMmWbMZmbMM2bMAGaZ/2aZzGaZmWaZZmaZM2aZAGZm/2ZmzGZm
mWZmZmZmM2ZmAGYz/2YzzGYzmWYzZmYzM2YzAGYA/2YAzGYAmWYAZmYAM2YAADP//zP/zDP/mTP/
ZjP/MzP/ADPM/zPMzDPMmTPMZjPMMzPMADOZ/zOZzDOZmTOZZjOZMzOZADNm/zNmzDNmmTNmZjNm
MzNmADMz/zMzzDMzmTMzZjMzMzMzADMA/zMAzDMAmTMAZjMAMzMAAAD//wD/zAD/mQD/ZgD/MwD/
AADM/wDMzADMmQDMZgDMMwDMAACZ/wCZzACZmQCZZgCZMwCZAABm/wBmzABmmQBmZgBmMwBmAAAz
/wAzzAAzmQAzZgAzMwAzAAAA/wAAzAAAmQAAZgAAM+4AAN0AALsAAKoAAIgAAHcAAFUAAEQAACIA
ABEAAADuAADdAAC7AACqAACIAAB3AABVAABEAAAiAAARAAAA7gAA3QAAuwAAqgAAiAAAdwAAVQAA
RAAAIgAAEe7u7t3d3bu7u6qqqoiIiHd3d1VVVURERCIiIhEREQAAACwAAAAA0QE/AUcI/QD/CRxI
sKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsWNHAP8ArFiRr98KK/jw3bs3sqTIkSsAyJxJs6bN
mzhz6tzJs6fPn0BxwoRJkOi/kQJXJFV6dCnSo0ONPjXqNKlTplKZVoVqFSrWoUWpel3aNWrMoGjT
ql3LVmfUkidT3jNJst/LunFVsqz70srAuzzNCh5MuLDhw4gTK17MuLHjx5AjT5VMubLly5gdB4a5
2a/Avl4zix5NurTp06hTq14tOTTpkD1DjvQs+2RobDCx6dY9EvfQ3bl59zbru3fxFcKNCwZO+Dhz
5MmDF39u+Plx6NenN/8dHfny31H9qWO/Hpz78uTZu2Mv7Fz47u7W1bOef9n1aNg8a9MGTb+///8A
BijggKjZJxp+O+n312wGEujggxBGKOGEkTWIGYI6KfgZgxR26OGHIIbYX2gkgkUUYxjmpKGCIrbo
olkgSBYjZDO+OBIzUDGj1Ao62ljjiaeliNOK/NloZIg/OpZkY0t6yEyPPfIIU5QtNmlhfT4RyeGR
XHrY5GJfKhamhFFSOeWLX15pmZA3aWlbl3BSOGZicx5WJ4BmFlbmh2OOReJYQCrGpk1u+hXnoRLe
aZiihTHKWp6I7fngkuSpWdmgNRVqKaKczgeCo4OBGqqDkB4mKYDYgLppa1mCtv3hm53G6qCoo1ZG
q2OnlmrYqZiVyRuVS+pq1qoVtsrgq4bKquyslt0aqrN6nhlZropR+au0Un4KKa+GEQsZpjRpuuy4
k14GbaOicmsZteUNleunUpr15I3Y2ulbiUidCOhi4M4kLrkAM4srYefSCa+7qHVXZo+fJiksYXt2
12eBxtqGrLcBZ6yaog/DCHG10s5LL2Xk7QplvYnJF5WoGDvWr0z/aixzhF+yG29UkDa5LcqLlbzu
YD4TfCHFsbnK4sxIe2nz0lOePHK2IHTsnWoqP+spV/oG+tjLIBldZNJgk4otlDoPDDRlDaet9toR
Uhdmy41xHXPYdOMZ2cHV/gVNst79iQfjrXCjWPF+W9Zt+GoiW1b1Cg0ztvhqjw/VuGmB8zv4grAe
rvllCz+dMt89g/4s26GPtDbeHlYu6OUXy/xw4psPxjRioh8WOWa3x+rn7pTJ7XXhIKp789JQ6gi7
xsLLnnJkuTNfu+GqJ+b7sUdHOPvw8u487vHYP319bo8977j4sSMWvfmsVw9h8qdJbf3Y8HtO3PiX
NV/+a0Tn93vmA7qfms0TEp6kbme/89zPRa7BWr6KVTTqfe0/7COQ/xYjMgHeKIKPKyB0Dkiu8x1m
ehZT36NsBMDGcG94ulJZ7jTIwQ7mL0H7S5ZpShiieSXudXlyH3z0xsIW/cbOg91K3wMRFi15XRB5
TuvezcCjHPP48ImZAWJhQEg4/mlviQfs3Hp6CMUuXuqFGYqhR8ZIxjKa8YxoTKMa18jGiIBRRWIU
EFfIki8FiuUpV3lQU7K2oz6CZSB4lOKadrRHBe4xKmEJy4AOScg6LvCOWhFkgd44pDh68ZKYPCAV
MecXmNnjk6AM5Sf/8cl6gJIfqOSHPUg5SlG6cpWtHCVICAKSfMRylSoCJdfawste+vKXwAymMIdJ
TEIBIJSshOUqWUlKgbzymdCMpj3wYY9j1mYkItFHTFagzahUkTZtDKc4x0nOcprznOgc410SU8V8
uPOd8HRnVIpJz3r92tMmmXzMPffJT5+8JZ4AHQpAA+rAlphkL6Wsh0uG0s+GOnQtiCzIZLJC0a8M
y09fIYuBtpLROU4UkBFNpEQtOlHOPPSk/XzLQUeS0IUadAUItUc9FGqXgp7ECjjNqU53ytOe+vSn
QA2qUIdK1KIa9ahITapSl8rUpjr1qVCNqlSnmlSYfPM23wGfVqfG1a5qZzja+epwuGOdreJGrFw9
q9+2E56xehV87xHrV8+aVSaitT3ACetWx9PWtDLRO3E1617f6lbyaU6Sgtlk6/LJ2MZGCLHDEiLw
HEvZytIHsoiULP8sy9nOlgajj2QkxhQrQs+atkX2wax/VEsUzf3K8LRcOhe0Cma3kZ0QREtiLVJc
q1vYbkxGd3PR90RkJUq2yZK+7ZJsgfuiKyKJML0l7RCTa6SCLTeAIJMfzdiDr0Dta3UNDOF0qVtd
W6FtfWbDIoBmBLro8pa8nKKtfPuX3gkqrji0cm94rwrfWNGWceZqX/wYE0ECNxF7YfKffvVn09f2
N77/RZ2t/qtEyhS4XTg7E+quKLVPgdaPohXcfjnZ2wcLiMKMQ/HK7lQ8qpWMe/C6rWAqCDTcSNiP
n32viTUGqo7dWMCTq0zQgnxh2mGDVz8elnGN2eAS73hCcyqy5H7kPws2xrAf+5zBKrTkTCH3yYaj
8tiMdz0z/WlrwD1DXAGTPMgg6RjM5WOYlSs8YOEFuTSiu/N8dPOjD2uld2+Gc90uzObS4RnLqVFZ
oU3k5hEvVtBJazFmPsVF9iCaNLlbNL+6HK4vQxpgUm7Opf8GglELOc+aphyn/eXpQTOWxkdUr6jv
2zdTd8iOIWYgg8U7WSfVl2ey5qD2bmtrWyum0rpbNcxa3aEy15lcVUYzsPvqGGRb2th0WzAMmxxA
SduXbs7W7vAMa+3wlDuT2g4jt8Xmvf7QEL3tjvf8jn1qbMM33XBctwTZTWfRRFvesotcD9f66aFp
DaS63javN+vuafM71MozYvYkfmDiiI/gBf8Pviup79L9vPtDHzdZYqx1HR1l8NwZ17iyu9bxXs3Y
4c3dVchKFR35YDzlytr4cTtevCQSsd841prQH8loRCb26EpOutEpTi3c/GM6utko0pdO9aJbfehB
JzrWpa70q2v961kPO9ervvWpe13sZi+70udIR7BbztGlzadXTI5ynG9O50xeuINHpDEnq3xcfp8Q
3r3ccr5361CBN/yyEv/YlWvKk9JM5jOTSZBlOrPyyrR8QZCpS4XoEqWgD73oR0/6MErz9KhPfSip
ac11IuaqkE+l7FEJy9nLPvOVz/1AbhmSgtSS913rffA/X/riG//4yA9mSJC5+1FeXvXQfyXrcclQ
bv5us5tDoc1Nqcr97nv/++APv/jHT/7ym9/7mLO7+tfPmHbWVDDvx2by5y/MxP4JpCO9ikH+iHAU
KXIwGiU9qXV/AThP9HeAbiFQ8bcCdMGAd+FSZvF+7rcCesFS9gCBZ4GAGghRS6dR+CdS/JdHBRhJ
HnVRWZF/Jdh2jFYVk4GCZrGBMDgTKkWBK8GAnwSBcFGBK3CDEog5cDFQGBiDQvgTf1SEIphARbF/
YvEnHWV//VcWTTh0+veETYGECDeEGziDQBh/PzhQPfgq7BeGYjgY/DWGZphtjvdleDU/gbUe1LaG
xgF15HFzcOiGchiHAvcefSUeaEVtbjhYbmVX8P6RN3dIVoP4h9LBHmSViGnlHnqISYPXaR2XHX4I
V4L1V5jYVYQlHeghWHc1WBd3iZuoVmVVWOMxh2+4V3h1iIBoiq5oim3oV68oioHYRZHIaoV3hroY
MLe4bLm4i8CYc2n4i8FYjIjSiyynd4xnjMyYGsg4N80YjV3yjF82dmdnjWpHdmCHjduYdt3Yddl4
jd6IduD4jdpIjufIjegojuW4juH4jubIjul4cEn3XdITaNIYhv+HeMOojPlYGtf1GCo2H3OnI//w
bQSSW/1Yhv8oGgGpJFwScl7SjlGEjw3ZLMwlkDEnbwg5IArZaLvGkBc5aRkJkS0iaUDHJ+NYkf1w
N14jWZImSSMnCWwduV4AuJAk9pKZYV3BVUNzRlw3CZIKJ5I6aV4wyRgDCUGxNpFBSTmBpo5QOY5R
2Y5TOY9UKZVYeZVaaTrxKHQxUpVcCZbw6I7iZiCwRpZoKZZcuXZX912jZZFFeV5HiZTYZUIw5x9f
UhzUSIxxKZNzSZfwZmDi9h8/EjR76Y99uZNy+Zf+gZAQZxqlJig4+WiJGWCL2ZMC4ph3aRq+wTKT
GXeVKSPzhTZJaSqb+XKDKRk5FB2ptpIXApeheZmYKZqoIZFZFmyqCR2S8mMK9pkuGZuy6ZcYSRq2
GXEpeWy+cSplwyO9KZTqhpjAORoRtpMq/oaSj1GcZxIdyjkjHCaZzplv0JmWWWmV5CmP5jmWaime
W3me2yhhYvmV42l18JKekEKf2GIgwiEycwcTN9ad7Ul0bgliIhaSORmdp4FipQlg2YWb/rZBqBkv
UXOXF5Yq58iSBEqZBgqQkJEzqMFmj3llyfmgB6OZnsOaTZljLdlrGUoarflzgtGiE8agJGOcI/qg
FKSbf3N438lx4bmiHXqjiAGjv/aiarM8KZY2THeasxZvLXqYROmjqcFiS2knNipz8SZjtGNhSqqJ
QuMyvqmiUBqlCSZtixIj/yZrE2RvU2pAW9Y7X8pwYeopSXqlVoY3/plmAoZhQZqUTlqg/XF6Yhz5
bHSqYRGamnWVaDI6ZarBO3gEaCkKp38KQdwpqEDHNHrGpZj2PJcapVGnZPboMrAZqQ13IzH2oHPm
XEOGpM5DpJvKGsJxY32KoaI6H+yzYbTGmRTiN4sWq6A5q/+jJLRSd+YmIYsjpLz6m746Gh9KpGwq
GsIqGTfHn+dyrGCarMq6pUYmrbcqIM0jpNLzpntnrS5nqIYGJkn2rCBaO62KPzu6cz0qruOKpZaG
OyWjqoeGLt4aJOC6jHEZbrZjb+j6r2oqR1RRsKzyqOEaNjUJbmQ6r3tDHwHbeAL6qXETqohSYAs7
M3d6NtA6sNdWN9QKqXWJpjlEqRn+6zqmWokgmmgee4z7epI+Z7INi7LkepYcGz6nEa2a9LJkIrOB
CnCygkM/e5yIFrERmzQhm7CZ2bAkuiz+ej1Y9qw6y1lJy6+mSa7ESUI+m6iYWh2ZcbS2yLPrY52I
o7VD+zAXh21TK2hV+yDY2aBA+z7ixi3PY21g61ts54GOeqG9Oqr0FbeZcaYYq6dLWm13u2PdRbED
OpR+qpRYGyAna6XyWmS6IWMD17L6KLaOy7W1FbhM27CLU0CHe4ZtC7ki8ra3SUQ39HJV0zyj24yl
O0NLGbn0gbrG+XOQkp9OlDfw+q3tmndPCrfH2WwzS5Mgox6Vm0KYG6ex67nMWbz9xAu4LnqXO1Rj
vcuuTomwDZKxtBs8xrummFgyr3u9YWehjCurgAtr8gpqlDo1Nbe85LtpAIp1b8e3DzQ76xtpTiMy
R8Ybaxu/hgcoilu/59u3FFc+ObIjzPCIAIxamvtBXho3EYwiE5xaJ+qdFCzBGpzBHCy/5jPBHhzC
ioei9lutq2G1l+VCgAeyD8x3A8yWLxwguUZ2Aky/KqeCEOxIbufCOwzDNiwhzbtaE7uCaYfCh1fD
fdQgCdR4HoVr0FWhQmxIRAyORrzBJFzAyLqofafCi8fCv0t4ygh50SR5r0TGqWfG0ITGY4yFbNzG
bswWu8RPyAQUTSbGafxK9f5Ae5R3esz0eX8xELaEe13TaZT3xoZ8yIjsZcznTNHXyNE0fdfEGdYn
GLAHEnjMD6ZUe6iUx7enxpHnx7T0D4FcyMJXysSXyKicykK4fLrUypaXeY4MfZD8Etl0fbZsVSRm
x5P3yY3sya6UTOAQzMI8zOBwyqp8zMiMfHYRy8yMetQ0TZGMTZNsFlXUwNYMIZ4BM+m0zdzczd78
zeAczmeUzORczuZ8zqCnFMl4zew8IO7XD/Acz/LsevpQz/Z8z/icz/q8z/zcz/78zwAd0AI90Pv8
YAR90Aid0Aq90P6sgPL80FwI0Q+9P3CBU3LBEhjITQy90Rzd0R590CZ4gv1VOBVTCIAl6H8lNUWr
kkckFYAsrdEfHdMyPdMFDRMVjRL40A8YHdE3ddF8YVM5qIMXuIAwTdNGfdRIrc8hBVpQCIUpvYT2
F0hMmNIF6NRHOIUchRUvndRc3dUErYAUqBcmMdQPKNHzDNQHFVM0Rc9e3dZuzdBFGIUV1dJKjFFV
vVF2nYJ6TVJReNcRJRhvHdiB7dAPLVM4aNbxTNENmFAAkNGC/diQzc8V5dRUPdUh7dIjGNeYvdeN
GteBZIRICNiRPdo0DdYWOFONzdOnXQ+prdiITdSkHduPDTYvTRqyfdscTdhmXdavvT/t/Nv/Uc3A
PdyscVXifNzIndzK/r3czK0RzEbcKxrEWYqnYAO/1YYqDRm7nRiIlCiLhSVXfvWJtYhhejVWdAVW
121XqtiKDurdyIuK3t21sLjeWSXeXbvdgKVV572Jl9S88M3d7kGLXsUcj8jA8v1X5T2KfmjgiFiH
eBg04O0b4rvgrFhjjqhCqsiKEE6L3e2+48uPXyyJ4ekcC26J5j1vmdjhs5iK6M3dJn7grkjiLj7e
oijjJc7h0w2K+o3gPH6zc1VX+23dyRbiuPiu0B3dLXzkGSrdSm6gTN7kwPnkUB6aUj7liVnlVh6X
WJ7lOrnlXD6SXv7l2W11CNd/96i9Yh7l4hjDiWWxaX6R3RVaP9zm/Wj+5pWZuCLVMtJlwnbOxeV7
JGHe551iwS5L5L5o5LP6kEzCJfupFN0rp1CMJXUOr4oOmEZikCD16KzxkdlbwiIbqZUOJhE5u+UV
6Wvi5nEa6mISkUmk6avB6Vf8nMGb6Iy5p8LVvsQF66+B6mHKk8JZQ7j+XBT5mpNO6bVOpTM5tFXi
mpLu6UorqqpOJ7c+tz7C7Kde7OIa7dJ+ut+77NZ+Kbze68Ep6txO7S6SJkmerNoepOWOpuf+xIae
jLPuq+uO7NOeYd7+7XuLxXwO6uNO7nCyrJB+oktssAQs643bu/W+KM3mPgK/6VPUlt61uAiPvtbq
678emFfLuYT+qaNaF6AHD57zru7Hzu49a5ePO/AWh2MF39khz6MjT+//LiYJOi1DOiuUchyBnuoY
r5FyK5gc/1uE28PX7uxVrIs97/Nue/MeWXHD3uz8/ukXP/OrvvQoH/QHejs7/6ejOZtLe/WuXm2O
svVcT5pUT6tMD7E21sG7ju3x2/Ul/6smRGb+0Zkg3PZG385w7/V+C6RYP3JstZZWjPdR/+wKb5Rn
n7Upj+9/HynScmQrw/g53OmFf/TFuPd8f63Sa6WNv/GQfzPL+cHxDo3WnK8eM5yye0T5y3S0Wzwh
OjI1g8GxLvIJf83TaZmKP7y3SbZzjxvvUkSiT/kVb8DkG2H9FGb6G7+sqJsnnx8vIsObW0r2JI/6
Meq8nR/st1kc72KmKeu7wk/7Fm/7uN8sKPbwyq4nCzyndjpjMUswcV7mtT1F4V7840/+P7P4yZ+l
HCZhHOZjALHi3wqCAgsOJDgQocGCDR02/AdA4kSKFCMStPJPIwCMCx9+BBlS5EiSJU2eRJlS5UqW
KEG0/PgSJkiZKpkVvDnzY84VPHkWxNYwJzOfBEH8xJmUYFGRL7Fh87hQKkOqJiNWxCrx4oqMGzvq
BBtW7FiyZcPWBIt2LAi1JJmS9TkU6E6lK9guFUm07ki0USFqPAg45dWsFbd2PezR7GLGjR0/5ru2
rdi7Jf3fOiYa1OFbZneR5t378Gnlg48JF56Y2CtXxZBdv4YdOyXptI5p0136uWzQz3obsvWtG+Rl
gk8LTm5d9jRqAKoTy4YeXbr0yZZpPmY7mThZzXi997RLWvjIt92NhkxOdjlq5xxZT4cfX37Z6uSb
us4eejdu8PkfjgetJ+Mcqi8h05izyD3EFExvPgcfhDAmmwC8DbsKwRpwp+y2a2lApC50qEGx1ius
va8iRDFFFQv8ryQQF/spOxZFyvA4/zjTSbO3XgzxQAS1YnC1jFQkssj5ZtQvJB5R4kwuF2WEMsoZ
cVypRvB+Q7I0x0jMysT3jAQzzNiW/A7A34Y7Ka4y/c0cycqUOAzJTQlVEjEsLrHyckgx9+SzsSmT
VFItNuuiUiU5bQLUoUMJzPKjOsG607Agn+uzUkspC/DK2RJt8TuhUlp0pUFDJVCnR039EciOhDz1
Uldfjam6QtHEUjdbb/KNJVJZGm9XLO308cc8W4W12GK1IxSn3jQUdFlPT/K1pc+iNapRq4JFcFhj
t+VWyc2SLRNcTSsbqlxORTOPsZyorXYxYluKNMFVKe22XntrKjRfJ8eVCc44022M3fBMw5Y5be1F
uN6X8lU23J4KJdckgWFil8yxEJpqKpjiTW1SBiFyNOSHkiNZ5B5HNhlklFc+uWWVXdYSZgNZfrn9
5phtnlnmqm6OGV9xmcqV4WrVWmjAkmnmOWejU87uaJ2dBvklqTRSKOnBUm3O4xMT5nrbmxbe99OH
w2446L3ym7hKgGmy2CxsalIMY6tR4lhV1ljtOu9ieYq4U01tTRKpDGXcbW0b23Z7NKILZk/rL/WG
XMzgkgKOPw4vL87wWKGUWDMp5xscOcZLdFzPyE8v0txYvxVL87DSfs1KHt9lqe6s5/0Ydd1T9Pe8
Z3V1DPbHDkWS9pVsP3h35R3s3caZXM8R+uie0hxx4+nEOvnlt59u0NVRkp5iFElFfO6Lsy/9eu7X
D8v7pgoMX9f4Y5e+fKTNQj599veHrHmX0P2aH6gCOLz42Q8k6qMb+nC3Nf41sCz+M5QBSTLAgEVL
giJB4Enyt8DHOdCD7TsX+L4nP/lQ7yQXLEkGraLAu9Hrgy9E1O/EZxKLCW8s1ELhYEbXJf3B0IdM
CmFJKMgoAMbHgjmE1w7x1MMfNtE+MoQWd4JCONiY8H1IBNaWWLggBjrRi1cym6FuGD7OvU5OZUSR
ClO4Rarl7osfBJzDJHZD+kjJjmislBpJssEWuvGNDhSapmjUuiFGz15yM5DG4MVGvFkNao5MGSTv
t7Oc4UyQknxaJCuJSUs+cpOfpIrqNOVJqGiSkgapkSdP+UgrZnKSqoSlKRVJtZypkI9c/ezg+tzX
wFm16XWxaaXeEGkQRdaOkS7sWq5o5URR+s+GmatiIYulx5Hcso1dtFfzdsm9OF6yIc98Jvik2S1q
YvCYfjQS5v6zr176UJm5+R04xwmtcNarnOg5JzaJpM4w/g2eUEzmP91iJp7YsJ5tOmjC7nnAfOYy
dYH7mbiUp80QCi+h/3rjQh3VUNOBqZkCpdI7tzc5GfrLovNE6B8tqR6OarQxQCOpP/+5zT65L5AA
gt1FFYXS/bk0RC3lXUTlGFOxJaybQiMK2aBpKJ5+JJgqPaASJcXBjj5IXwDNFMJuqpSkekeZadPp
UqF6LS2mSntW5Wo3gci1jw6VnUn9mVhYw+pDn0IEqCiCIFxoKp+Y9lWiShGYTufqxboe5K4Ryitc
KrXVh6VUnIRs6ljNN6LDQiixY9lrfBhLowAmdLCSPSVLzcpEvv7VNZeFT0hNOr+Dfha0Kz3faKla
2BjKNDYwfWhjh4ouehrytbChrUAqq9m3ykZN3rQsRD0VP3lG9rc67FExj1fZWL7SlLqpritb1tZV
ytK7k8RuWleQLpIBDJZWym4nv6td9VrXvezlJCbjVsuZWLOR88msWfyqLpuKN0DhO+lzIeQX+m5s
uNAhKl4xc67ESi+nzhWweqQqrz7q87ZB7J5+TWtbNjlYbRCOMP4m3LHZalagQf194IaP2yvH0hPE
IW5McO2LTOOi1rgYts5MLacf1wX2xTCGjIwPfOMw4RYmt/Jbw4ozyN4C+VVClm2FHXpaHJtYjrza
sW43o7loPdXJroKysEgLG5Gmc8NrZR1ylzwtALv2y9IJc7bGrN/i8mnFolKuN81TUCH++M0OirPB
5pziK0vuzHl2y1x4y9k/Ry7QjSvxggtd5EOXNE0A85BT3dzoNI7YbrisqlgCuad2prmoTP7mv/zM
aTA9mnSRJrRMy2wpgvLHqTsFyaZZHSZX8xDWphZVb5R6KX6ayTxy0vWu+dTrJf761LZWcn5reuIz
Z8hKXlY2/5g9VSmHGqvI/ZX23oQKFM3UCNvZ9mBUpqbGGbuxq7YV27vDDSvuriso5l41ug+5Seli
L8qg9oiRgb2/QhlnQMnW976pUjVQJvDf1+xgHOUNR0JR7975Tjjk1h0Ydg95M8PuKS3BY3GEZ1yY
nr5dt981b4VfyeIm//K2KQxwuh3P5nS6OXSpYpz0XM/nOa85zoWu8z0CXYNGl43MSazyoBP96ENv
etQJbMqiQ/3pTicr1lN49ahz3etJR/lZoRNcQHeN7NM5u4qU/mmIezs2aY8P3Mdudu6tPeU0hw/G
BGOVvYu80wLZu8z87veyC+Zdgw983AFPO8TL3VRhH/TbKWn4xGdssmj+X3hC9D51hocWzsRkiOFv
ZvmGz11jfZ9vIi8/YMg7e+4goxrDe64z+XS+86VPfeE1H3rVRxW2YM8YLeuU+1a3nul51/zUkj8y
dRNp84GxWeATPx/b796RzX+QQqSv/BBhf092FzvYq2ksx0uea+XPvvEBHnv2t9/974d//OU/f/rX
3/73x3/+9b9//vff//8HwAAUwAEEv/QhwANEwARUwAVkwAZ0wAeEwAiEwPTRCnuwwAvEQAv8hwzk
wA3kwA/MQA8EwRAcQRC0HaxBwRRUwRVkwRZ0wReEwRiUwRl0wX4AgBLEwRzUQRDEB3uwm5MAuArE
QRHMwHrgB3sQQSL9NEENvMDliIiBYEINbI72a44mpMErxMIs1MIt5MIu9MIUjIgdFMMxHMEevMGt
cAiJAIkgrMIh5EAj5IcjVMIdTMIuyYcoRMIpZL82zMMv9MM/BMRAFMRBdMEwbMJDJMNELEMfzMM0
XAF9WAE1dAg2nEMLrIdDNMJLjMNNREJELEEPrEM8ucNOlMInzJontEJCVMVVZMVWdMVCvMEmpBoS
1AhFTEQzbESC4AhI3MVIdI/ZEkJ7uERh3MRL3MBNRMY4JMVlHEFQTEXDGMVQ7JJnfMVqtMZrxEY/
NEQ83EBnrERbxEFc3Ap84MVHjERzbAhKhMNk5MRjZEdl/EY31HnA94tGajQMe8zGfNTHfeRHQQPH
fwxHRkTDFSDHc4TEh6DEHIxHPBzDhSTBhuzHiJTIiczGf8CHi8TIjNTIjeTIjvTIj7wHfdCHgSSI
glxDiPNFilTJlWTJlnTJVUwJXIK5maRJskAMCcTJnNTJneTJnvTJnwRK+AsIACH+HWNsaXAyZ2lm
IHYuMC43IGJ5IFl2ZXMgUGlndWV0ADs
------=_NextPart_001_004B_01C12426.EF04A220
Content-Type: image/gif;
name="slumberger_windowonwallstreet_chart1.gif"
Content-Transfer-Encoding: base64
Content-Location: http://www.stockhouse.com/shfn/aug00/images/slumberger_windowonwallstreet_chart1.gif
R0lGODlhDwI1AbMAAAAA/21tqgD//wD/AP//AJKSAG1tAG1tVf8AAP///////wAAAAAAAAAAAAAA
AAAAACH5BAEAAAoALAAAAAAPAjUBQAT/EMlJq7046827/2AojmRpnmiqrmzrvnAiJwAw0zZ+7/U+
9z4ZUJgDGovIoHK5HA55udvTGQ0+pVUslOi7Hqu15E/czR6b2fF2bTW7mXAqdy1X2+H4a9t+xvuV
fXtsTH2FYkMSf4qLjI2OaI+EaZGUlZaXmJmakpuZep2goXiJojMDA42nPqqRrKV4rK43skGxqHGT
kDqDl59au4Zlc7/Br8KMer5/ysZ8k8wIzXCJp9W3Ca7Z1qbbMrLd3t224dzV5Ni3tuDo5ufh4NbX
tO7q7Tvx8teAYVP8zmX+xvCzEWhglIC7iPSrY3AYQhyfGjo8iHDgHYhgAhbDeKjjQ4vD/zhSDHPx
zheSAKNJW0JK04GVSl7CjDnzhsyaNx3l2qeQ5MudoHLWnCEU51AZRVlGUynIyxsdgXa0zJQUZtWZ
V41VZYqJawKZ+rzxCOKV0bWqBoEyyqqEmjcAYdeWYvY1UtlRpITelbpob6WpmNhqPbpDsKitnbge
QBV3gFoZfu/NwmaK8kq9kSdLjovHMKZJnn0AbpTzbjrIkoAgeChw5M7RlgIQliF7Nm3CtckmnhFA
3tuwjHUrCR6cMnHjoNzeZsKZM3JGuTM5lzJjAqPMf3J7hSs6sr9oGl23VtopdCjzhwmzxX4d6bUc
vo9bvuG1+PP4z8XihYUcLPLT8vGnCP96TLg1XWFpIYEIL21NJVM0AYrmB3t2UbgIgZtgWJ56oyS2
GA3MrfJfdfr5QcBNAMK2iH3uEXBcYwTESAB/pzFRlHVL3CKji5UBON8N0Sm1V4SwWIjaNAomk0RU
9Bn5h4ZU2YYUhxNqMsABADjZ45bYeDWjVNGgKBZwY26pj282hRLcBCwSdeBkZ3IJJgIvJiBjWyUS
9+VmIqISZiORaemIipQEWZOhQyEqjaIsXeIYX63M11JkjOZXWYmKVNpdpGgm0NuIt+Ao4IWz0GlZ
m374CCEFgAonDaHUDWgblC5R2apOU+JZYH19pdkFIUQKWZciKCnC5q91cfdmJ1kKVJ3/qMc0mmBa
HZL4yxxOccHks4s8Nqwlwdmw7LQJbpIFrZWgm4BKxXJ5i6KTDraasRA+sh6slxgm0bP4NltYcn4Q
iK8xAzdBEyWPwvmklACgWyM23MHhsGVMdZrXoJpA6+ofGv8LE6tE7SarJYKGppJ3KO07Xk/kfZZr
t8vqN526+f7gyC3iuvujpYqENZWpSuz517oWVlFawU0uAm/HQfUlKBOablxogVJDQUVBxbKWtJ1C
I5zqiI+QufNMjO6UcMwBFjcdYGHFSHXI3T1t3XZLCMx0wPwiPSjIns769nn0VWmb3nY+jB+oY2MS
IaqD0cjzipS91FKwmDbo1wFc3f0I/9/r7hD1hlLSTAnmQyEgsC7/EEMQGWB+XUt+VTGeYZ+PV/66
mfPJ1LXam1+Ol49NGnkTq08j21nrpYie7iuwKt9oEKcPbiqqsivxefIhyhlnmTF/e+l+EwIWgOZ5
7/OYDdcf6Ye3vvbupPORoEe+XJkIf+tssFUvcU1VpC9E4mHzVJ1gQwpoca5uj2AfAhXIEgb6AH5+
+NwJImgb/6mvEhbsXB6e8o9tQYZuuLCRJeqwsFQYzGnbUaADr4UVBlnhOpQySuj8trXG9Up6MMih
DnfIwx768IdADKIQh0jEHAKjI6mDSg+whi0kJmSJrGti6rbFEDJAcXVSPOLqsAiRLP9qsYlWVNAx
DEERKU2DcGYEFBrT2BUprZGNhKELHFMjx16scI54zKMeq/bEJUXxDExCIzMadr6DzEAAsaIfTAjS
PkCASFsJQOT/JFlCXMlAADmgpEmEIABNSuNcxngChszgSUVG4o5wo0QdH/g/6lAyCsWrHwIMUABa
2rKWuLylLnPJSwHo0pe8tCUwd0nMYBqzmMg8pjKTaYBhFsCZyITmMo0pTWZOk5jVxGUnrXnLbV7z
m9HkJjjHScthCoCc18ymONeJTna6c5rqhCc3KwAQJ3Ywitwi1isvyUnv9bOVpYxDJZm1g1LaQABF
yWQv+OmxRhw0fgJNJDIi+ciHNuz/kQTV5EX/+D+1PNSUebBZGVuJt25FkpE8CGgXXqJSXeGPQh/d
XxcQGdNTIjAUNUXWATyZ0xFS1GYO/am9EijUOASUkTJBJSGK+rKQhrSlB1ufSUuKi5jmoqdSQOj9
xsjFbCkxJDU0GFQ990KlnhBINr3qWH/AUputFVeSJKRD3yrCU2JVocfD6Ag7uYQMPlVpy0jrJD6H
178ClZIZzEzK/uhHsOZTrKQSBEFTOVGg/jNTHwUAXS2JyJ8w1Kix+YxGmQo1PgSWNKDAalQjWoki
EEWzS90sQGlQyui91K1ZRe1MjJYQqdaqsKKIQm4UaobLjs4TJyWtTI1HUomOzFyH/+zor3b6wmYk
9bM/kO1zjbW+rj4Fio794K+UCsHu2uAmRaDpPiOpXarKMJEH5WutPIHKq6DUsvXFqQI9m1yriPS/
gINhLEk24D0a+MAITrCCFyyKAhNYv+A9ooTtOEXv6lfCgMSneYPhQYdSawur9HAWIzzCD2uBxPSV
IklC3C0ksphYToSig/9SxBrb+MY4zrGOd8zjHscgeJOaMRsJNxpC/SxzS7HQG4GcmSOHdVNEy9uS
GZyYJmNHRUY2oJaPPGUqc4wpBTyZmPMZZChHuczijXKaw0xmMd+FzWses5rNPGc1wznMcp4znNOs
5zzX2clxDnSb+YzmQpelzIYWdP+DuGXoPPMt0UST853BTGk+P3bQdpa0kL18QU57+tOgDrWoR50c
rvQjvCGpoy+UFC1mjdSLFyGhZCesBq+yWnUYobWuWbjrDnuV17z+dYtR1xQO7nrYIewjqj+jYccq
49bFCESXSU3talv72ngU1KZ7hw5u0CMdjcnHt1cR7nOMo9voPrc2xo3udp873c0BN7tnIW538MSL
GzGJa6I90lvTodmrjnEaqphEfU+k1SMWeMKTyER8a3gjt9723rBN8Ypb/OKh9kuGdRFhX0wbejQM
+XshVT+PNaa61grgy148VEf1ZL9WA0mAh3K0JrtR4uWNrMhbyEdKeOVDJ9erhG7/ljsAdncZ5ELJ
XSKmv7y+YidQ2sv8/FmWGhlJ4nO+idZTufVcHSA3Xf9W2MfOdbh9vewvI3va0S722qhd7Gx/u0zO
nnaVyD3ukNH6LT6UrG8FR+t2L/txgE74veN97YiH+58Sv3X7gIXvd2f84eEu+fMeviWAl7zkX/Kg
rl/UG/SM+bqYtPHePrlms8k5SP37vJLTxjfKmo/sqo44xDWdY8OJHBzsc/vuNVVxcYtVYjFRmyxR
gHEUwrqlA7Pzo6je6S4tOd8nUaedhUp7mkml22ynQbP0p04+8j3Xtg8HQ5G/Owe6/e//Fjf7qaTp
7FH+8i/hV03Uf3ZHkWB55pU9/9r5TPzaUSaa0SYsQiSfwn0BZDjBExry0SkyYxw88ncHVB3VVznL
MgBAswRd031WYGqMpS3N9nGslHpmdH+WYB4zdiU58DSHk3Ic2EgWeCqyZ3Qgdwn4wntuMoPhtwqs
In6okBNrkn1CKCIjwhSCATJStxKwckfP5162MnLcdUoDYCjFUy/sR1miJxkIWFf8Ago4GGnTUzug
UBtWKIN4MTljUha21WkTZmsWRhZFM1Be4wi0YmIyd1M053NSVSPr4YJ20kY5oUKO8R3YwV97Qwpa
w4UlIUs4whbiR3LWw1rWIn/gM1V9VQnpEHvdY4KthYUuFxYNwYmglzi8Myx+sf8n8icbVZBku3eI
lOiEHzR107BcNqhzX3Zzkzd2OTB3kSd2j0J2P4h2B9CLxJiLqliM7jEljvF3wgh5ubh3hrcuflJ0
L7MnkWc6l3cxrTSMk0cByFgXnJeLqeSN4rgclHeOmYeO5aiOuYKNmgd34Yh47vgVodca9qRiIYhz
PSOGOfI965eHzuVUuQc2/HiFrQeD4WOQUsA5qmcBvGFGSSGCsBh9zDd0FFk6p7iB/qiFsiM2f7CB
DUiDN3B+J+h9j6gwL6EqIuk+AqYlkfEgsrg8MzQbQfKKaHV1uPgHJ+cbQEiQXuhPPkl0uHMWubeD
erh+4CeABcM3pUEvA+MtNjn/gs1HMAhZCoqxVf/Wa41les/SkSt5DYpyko8QlmKoP5tIhBiTKZFm
ORVzhnsRNcUDc5UYWlIiipcmh66niLgnPUKofg3FP0CZfT3gHBXYiny3kX5IZxMYi3FpSWk5Fo5g
l0JylTPJmJcxNC13Q7PGlfeEaog4hKcVGq+2QXgIOc1FdB9SLxqAf6eJPUJniYFji9LQhHhJNtXS
CcPHl/f2mqUJkFNpVy4UmNaFBu0iS55oQyRIGBJJh1iJka6WYqpkVghHmsGJdAzjUVyEQxhHY1F5
FN25K20YRgcHcQpHax03cOIZntFCnuqpROW5WAenbF0knxEhcKMpag5ZE/m5/52YeVvQFVTS+Y+h
9Jc8pxPe4ga0WZuvkKDQ55tQCJmrKFml54a7Jki8CSJYElGu9ULaxaDUwVuOBGDEqaC+BZn/pUlY
cl+t2Ylg1YSGJJxLVVRmpS4sd5xTpVo0gVJqgTJX8wxZU5ynF6OnuYuQJFFyhKNkFVxCiigBeqEP
6ZjElqQAplntVVYVBWyaAAZ9c1/pJVR3FQkW9AQ0FV1ySSyzZVkl6qSxaT7i0Uc92jJpSlLCZTzS
CVwEmqVOlVCTdaenBVEb9KJm2lxF8BNVKpA2caBquqINKlDrVV1j5T+GNHDLsIa8QHpb6XHswUBJ
oaIL5Uk5xz6WF5DIJaqGmv+ZQeWkiHpdykVUNYinqwdZgTqmUimkpHpVfHpG3wmHklibnOoylAQl
6TVasJmoLEoDGVpZx+VTJpodQAVbp7VZELRCnuGsqvRKn0erfYqm5hiFe5BvGJaPFCWpusVc0CVJ
9ZdT+bWhc4GhxEqqrwql0sqhhqWWe1qrQEEQhTprhohylpgLlOqcaJpfgBlJ6IUspDRfijpz0gWo
mSCZVzquv4JJZ0qtsukyUBFXsbKvdhpgr9akq7WXm2mpIOiZEuewpvpwHiulh5JsrPmbCZus9YoH
xfeyYxiQKTurIKucEgce92mVHFE6yikSu0kyvVWjR8mZu3FqSriIVLlsRtv/enWUq4uWWh3bLk/b
BsVZEUDaWt9lYR3Gsitzh9F5LRZxtcR2RV+LDBlhj8tmVxmxYs3mtlgAt8/pDCkjtT3Hn3q7t3zb
txaHZYmwZ3g2f4gmuI6maZimMZOWabFYZ3G2uGs5aYfLuGfmFYMruYgraEEGGIPbZ4TmZ5/ruZEb
uIFSaY0mXk6GI5LbuJArulmWuJm7nH47u7Rbu6UWfE6JRoBru6/Cu777u8AbvMzDLlaLskpbn8f7
njfLVbg2CGlbtFULVlTUtcxbcCyktPLZavUZpdibQPcIa2jbvGobcKn2hhfGmR+xtQvXntLmgbgm
c/4Gv27wo/RrtpwAEIuI/72r9KNDe2xueBLli2rlMhG+ZmJYKr3GhmxsW0+juRBIG3M9u57fay5+
xL9sIL/Ny2+X5hSD9Lbqa3rpuxDL67zyW7YqQxcq87MI/HI9urbhWcIgEb8SMcD+xsIubI9PqyQB
N71Z6L3EyVj2+6f3ip4//KYrwzJ3KbxKvMRM3MTI48RQHMVS7J24iA/lwBj5YA/x4G1XTG/tsMXm
Jm/soApaDMbvoA31gMZqfA9YnMbxBg9vcsJa62x3CMMebMToO8HApsEQLB4tvMDQK8JJ0m8ecUU4
PLdGvC8wDGKLlYhhgLebsm7uJsb0VgvxZm9hnMnwpsmSPA+TzMWeHMpiLP/JlTxvu9lwPOxw68uV
HuStD8y+RKzKrOyjxVa9fMyeeWxwuWzLPasaVSyWPQPMBubJQ0HM1xbEFDwXI3ydQfvDLFxPR2xm
3zjN60jN72jN7JjN2LzN1dyqxJh03HzN3SzO5JzN7RPO5jzO2qzOgDeB4bHCX4W0sjvFGBd0IRqz
9HxtRUZHYdumuTa1+fxp2zYkaKmtL+h92DpkFbNCsibEH+yzPhcvs8itGQPJAZ2XbXQ7QpgLseSR
f0qzD6YGfhlHoRB/S1nQB62QIX3RnDbQtCMZjyEoOCjMVXWLLDOYMahHy4tkRMuRbKjSNMbSAr0J
vIIpWeAc2FGAOgiwX7P/kwdmVhKN0aaQMxjIcVkisvGMqULtaS6dfe9BJpyRGSGZlA3W0UWZYK8x
MDt7D0etcUiwGh+Y1Rxt0Vvd0xiNJlQtJ5CoMLxD1l3BFerXHAj2JjGZt3bxHl3yMzlL1HRd10eb
l/KQM3lidLxSffih1PTSittzKX7dj7PhJ/3SnDhMLpEblMFzm1Xm2C0tMjjj1KUIiTM92QKoH3cS
pGcdJ2NdkKBZ1i9N1P14DVP3fiIZf1bZ2KptF7uBCkCBJtXXlg44HcDjuH+ok/53H4gpA7WtMzQm
NJstgDRNcjhCOVdI2KOAYlnZYfN83L3r22rh2j9ShkxAkqGSgVt422j5/90KM4OW09T5bd0DEIHX
3bio8dz6jdqLLRq0/L7gqt5etml+gkqxndLTjTzR/YCXzdcoDXyqMhrdE5KzvYMYKAEPoxtk3TbZ
DScqceIa+dOJebsM3uDSASLFczjTqKu3A9YfvpIEA9j5gdsDOTb4cTfinXIX/jo7Sd+aaZHD++Kr
7SgR6jVt02VK3YJLvo8EbtmSoiLfPY3dTd3/geTlc5BruuPIzOQfo6xjbkIhbtghYs/4PScajpiM
cSwBntwyeJKgHbh2bS0zvLVaqwyYl0pRgM6Ezs6GXs6FjuhwM4/FCEpIEXiMlwjb93ZGyHaDjgOP
xxjI2IiHDnc/OAFJNf+Yzqjo5Ywao150IPMTKJGiXULqYkdPKWS9EzrX2WrmQzZRMfNmQrYXiErY
SzjA5Hra0wIsK+EvYIgFOCO2Yj6s6lMWHBxGeExnu2oMoJjQtQ6lo6ZYr31GO0CStQjSkpHecF7s
qHRAxg7RC4UajW2h0qDcus0wr/DmIhG+wv3SSL3skyV1tGeD4s6Izk4u30mJxi3dcboJyk3le+Sx
CjiIyzwZGeiA8zeSbG5ToiKCha2EF5+QS+uzA99ly5wL8v5JmFgikl0K9lHvrY4HK67kAmbQ+L6W
ZrSYDQa0zNPi8FzL6O1gAbqMAhLyT6dyNEDjno3QwTfS7QGH3vFlut7/DDKvn+vetGkuvvB8ngBN
YaQJ8aOC1iYEHz6N4yYk4Sm98k5j8+Sa8eDplgbW76INMBO/42IvlPwtzD7/8+uTftyj19wuktsn
N05CaeCx44Cr9mok+I9d87uy7hI34vet48MhI9se37Yhc2jT42YY9XW+7GYP87qqVE0/vCGQcbma
fDn59XxSe/VNdJitR4VpkuhXO96Oq2TfhSxKuplv5oTf9paPj1Nvvk+skzGSNndu2pBP3VNO7W+P
KUPu+1Vd3T4u7YfvYOb+8rbO8hv/mMyL1VRv45pNO6+vMEJz4p2w+qZ59/qgkY//kUms0fIh4rCf
5PXI7BNt60+/596J//IaPfS/TRjibZYZDgFJTjlIpTmTO5EGQWSchsT0yHAdVXaFKSCmJbfGc33n
97sHaj5BEdGYMqE0yeOpeWSWpCglpbq70n6xlsiVzbSGE0A5UUb7eLOnd9yGx0NdOfEdv9e1CGUW
rG8z0yirinKSwjBc+fvzqKFLyaMQw2HLsdTZkgHMgeT8TPAE7dGUk5RAS0sVlElDdfWaOEA5cKqV
uE3I3ZXtxfXVBeb9JQ4+GzZOzgVI4jVEHh6oNVQ6IEFWsR4ZpoQW/p7xLs49G/8uzmYTVz5nN393
NxZDWK9vv52nsIffT9a/l3UNIL+BuvK1enWGDauECh0+FCKpEY1Vq//qMARiAmMQKk4G8AnzgQ6l
UQ2PYOph6VRJli1dcnkpBEYqMq5Y0Xy1MQWZHTifoMwAtE0WnTQ+ipyHQOimJktLOl0B1UZMqlUB
rayKtaSmpVKtjrI4yKuOogi/xhBaFkeps22tsnUb6izcuHXPjrXrkm5evp209pX7dS9gwoUN1xF1
OG5ixXPmrlQbFa/kn5PNBrVssiaRyGAXpv2cl3HjJqNJd3qc05Kgm6ExN2xdM/ZDnT7NzlaIe7Ps
1UBZu/4NG3hv1TaJCw9be/huiI0POid5+mpq6VY7S79+MnP1OUm9fzfNfS4Ihj5t80YfsmA/9qja
E4Qf77389fXjz3//jwm/ffr3+e/3L8AMAOwvnn8EJNCbMnZ5bjYzgrttBgh3IgutsVBaSCEBSNuu
KAm3MyLDmZgCkbsSg9JMvKbkWG0S8jAxz7j0cgNqsMsGQQWtcnJMYEOmDJPwEgkE2NASH5k6EhA2
jpwhySB75AlKFJV86UkglpQhySq/srKnFqWUSbC/SAzhSy15BKDIqMC8i7whKUIRrxNrcApGHsnk
aU4cc9SzJ56YnNJNQWPqEqwo2awkxzPDfDGhCYWjbSkb72xyEx9F/LG5QdsCCtAR2bQMyzhE3fPC
PAMpB1NNR5WyRVfdXLRSUMrbcdVRVyMSlUXLvNGxMkN7NFJhYxHy/9JA73TyzVpH3JUlqUjNNMSL
6CRLxGaFTHMhY5dllcwNBXD1S15n5RFcPpWdNtU9qb2W0azGvPPPM5oVNyUuKYh1TUQ5a7fCfoOw
E0RVrdVDVubqNJfZT2Cst09e1fRt33UzmQmW81SbMaKC0iwmSAWhDMfH/GrZMMH11AFHF5EPNflO
Ai2Z78ACD+DYnjSHAaCWcFBGMOX9wmkH5oJkRmbJekhFhmhh1JEQ56NLXu+54iCNcFiNqeUsXmlb
MljfKf/1N9pEwWYxUcrkDYTsENX2s8Kf5hVbUbFsfaTi1iaMsazBul6D25PQ5UTOCTxN99y2qfow
X4m9ftvZwNneMf9he91G0g7qPpXW4Ym3jhjszqc1tkPI4VBVayEBh9N0x0dP/UrVUyebVIexwinY
4IKlcE3WN9Ecxd0PXbZDZXsfNNvD20x28RGzK/fei34v10gdjy8H+sAqpnq3B127uitUC17RU477
HjxwSstHy/rvXzcb7taRP9bP3jeCiu/WJTciPFBGuFRL+10H3++I96cBNipum+LUm/5HPh2p729x
KtW4HKg6aAHPS3CADLC4Bync2eANGFKMnfyWouqVrYDFwt+OxheX0klLTX47IQDHJyEi5QpLIHRJ
vZT3Eq04CEMaJKEHAzVBQ7kvcvLSoYrcZKUYvq2AXbohEbWjq0P/gdBYUqQWllIomMsdsDoP4lYL
lfipJjaOVWnhC/OiVEYdMawu8OLEpMbovTFSr46nu+PZqsLGI8DxKn5cCxfHQxVAtqGQejhk/tqS
SENmhQeMNCQkHSOjrUBEjaUR1u2ASLcXdOaSMPiAcfgYBox9IpS/GaUjgmhK5swNg6UEZRdJ95nl
0CgQx8HIJ6ulvQ85aoOX+OFrOLnL7XEwhhUxZmUcAqFi6vJXwyrmMNfQy0yeEJnVlGRpsplHbnZz
lpxypjerBIBtKlKc50RnOtW5Tna2053vhGc8eXgHEshxEuXkgh/tSSG23MCfhdxn7oTYnXsWlAVD
UME/B5o/fHJn/wsugIsmEopQig50oguVp0GvdlGLjuGheYBoUhbKUe+MFKQlDUVFU4rRSFA0pB01
aUxTKtKVGpSjM3WpR3UKU2LdFKU/PenVakpSrHyUnzsdqkqTelSevlSoGm2qSm+aUapW1ara7ONK
9jmpiDb0qr76aljFOlayYtCrZUVrWtWazhvkEhYGzJgrM2abi7GIlhbzzTWvc03eHIeXcs0eL8NC
o9rxta+t0Kthe1URmjD2SoOtqy0v49ZwcvI8qORjZEmoFrq+tbMMaasbLSvaspSnlsws46NwZ9pV
ttJ21PyrMAWLWM10UFOvXaVbASvbFFUWta5kbW0d5kk32laZo//dbdWgeVqVfJC0dQIN9jYjI+pW
1kKIDSZmBivNy3aFsb+87V1L6dji6EY32o1Rr1qrW/UCc7r0+5Bfm7Pdadptsm8tGH5529qDMTd7
oVUuXPmb27wm95Zng+99d0k39ia4ao3doG0bnF0PZbe9vbXwBQUM3AwblyJewRt4v4nc/e73t8sV
aHBLK9rrxvbE1pXufMEb3GHS2IfCVE5/qaZi78r2bgQu8Yp568wJcxjDAa6vAUM84BCJeLPQNTKK
IRJQeMLYwGsVq5Uvkso6UrnKxNMylsU85jgiBTxnRnOa1bxmNrfZzW+Gc5zlPGc619nOd8ZznvW8
Zz73uc9kBnT/oAVtClnCYAATicGhseAHRCe60aBQtKERrehIt7gSMx4gcWEpWbFU2LThBHVmHPzY
uzwLKmd9JKqX8OgMVLoErA6Bq6kSaVlXYNJUaLQaV5tpU0fZwb+uJdc6VGCAcRnB0X2BmE5Aa1zj
2tavXja0o/3saVea0temNrNtnQRsL9vZ0662tr1N7XAzOtvNXvW2pS2ZYJ+YtlZD5XL9+26rGfjF
eR1Ou2G7ZHjHV8rxVgUtsxfvSHGP4Mo9+G5UnYkPWPvb4V71oSVObm/3wdwQx7i4xV1uiT/c4dvu
OMWlvfFaf1zkcuX3rmP7b7+m19fIVnKwdWxJTCeHYedl+Y71/11eg+MysTE3iYMX7pdxY9zo3T76
tz+ucWdPPOPoTjq5me3xh1tB6VC3urpPrt2ByzwnXdf516Wc8xIjvOZgp3na1b7ke+cm7G7vd9AF
vnZko5bYQ19Lw2Hdg1qPse8x+bs3LxnmZyrJ2E85vIuUHfgnML4xHd87JxzfTcI3hY2VR5xmR5FB
Xx673lAddOhFP/pYFn57+tXkKr1M+rSamrOYZ71oOB9eHFOzKKuPfZZTUqfccxMSs49mkW2L+953
0w+FL9zjiz9TsL5r+YXx6imOH7/r8V2PfSGBRtD73Q33NfHNt4NItEAxU+D9+eZsJAimb8GpcGR6
dgGJE06k3//dK5bQQHjo+FFT/vMDJvqxXoIDgqQreDScQyQpMIPI2xLEYDiYyCd4QTXi678DfCX1
C0D2GcBWAyDEyAM2UIS+OCGtkKM8uAJ94sAJ5Iv/08DpO7WMOASPaDLykqYUSIuOUEBCub9ICAIS
xIDq0z88MD8UfCQ8CMDj8wp4KYQX/MCYgAxE6IMXTKNX0p/9s4IeNEH+E0L4I8IqVIQBGIu/6EIl
hEK9wIElXEK76JPoeAKJOIMkAD5ywq1lcjIJzMIKTD9EgEKUWEIwhEEYZIIbDD8sGMM+JIztEAUV
PJaPODal+KXUoxs6rMM13EI8VAJmWMEiMLQ+/EM/lLya4gH/MxzEKHzAZLNDC1JE04PDRtyk2wvC
SAykUhRDVCDAUFyJTbRBTgTER4A1MGCEUHwJRBMKrspB0znFmGPEI5ND1WtFV/zBO4zFGZhFMKhF
TsRFQrzDXbTARWiLXPNENShFL1SCLoAjVYNEZkQ/SaTEHKEGX+RBW0yEasSqSzQKMWy0XGy8g2Kf
ZmyCj0gCcpKoVzxBcxwkO3xCS+xBa1Q8LqRGdwxDH5jGR1vHevyKKCiFEsEnf1QKhExIBwxIgXyL
HOwDaEzHjiAlhdxEerRGWNOKkzzIHnTHGrDHrIq/97EbRqSkPXiDhtNIVdJHs/LIgUTHFwSKl5RG
hXxHlGzI/9KbxzA8yZecx5aAhDNcsI3UQDeIJZZ0F1LsyJ8kpPtDAYM0yUMoyikgy1iUAg4Yww6w
p6aER6dMNBDgALScgLjsAL+QPl88xxWcQlWSSp5Uyq3kSiYktK+0wCckRBQYg3XEwwv8QBeoS5iE
QoZ8R0R7zL7EAbn0oCGYiCiISapkPsvExJ30TNk4RvvLG6cox8AcQiLUPm10SWoMjM10TYpcAcwE
wOPjACagy8VcypZ0yDGIy8iUx860gaO4A6w0iuPkSBZwsmpSxv+Azp6RzpmJTuqczpZRhiHATpDI
mW8wgV1ohmZwhO8EiAu4BWlwgjHYh92cBvaUAAI4z1k4Af9nsE5pIMkXJIeA+ABveAbxTIDddMf8
fAdKqAZZCE//2M+oUUMP8Lna+zyBUk0eIjSpOD7knEksGIEPjDzkNEsoEEveZKm3TMInvMUL4NBD
VMyjxMuSJL8yOQXhm8NljNDQNKQScUuAij8NVdEd5VDD3McPpcg3YDW2VNFbNAETnamJ0EmsnMVE
u9ANeEy/FIIfCrG7QU0ZnVEW/VEfzIGIrIA8iNL2e80m9dIRXVE44MyUqtAyFM4dfccuSAIk9RXJ
DM6ynMvgHIIwXc6sRCQszdLRdMEZYCQSxQDg5NMPNUovXaTsO0yjvMCUtNPPhEcNiMvEBFBfBEV+
xD+tLLP/P+3KexRU93NTehqTaCzSMy2zu/TRRiXL9TNOyFw/IW3V2zxIN1RAqZHSP/LUT4UClXBB
N5ULKmPKSN2fwUjRarzFkFDOLi3CZdUBI+XSiMg/GjUlP91VMSUCLwRUZq0CAhA/9zNTYAXCQjpW
yfQI/YlJE9BJ0czEPrzQBeVUbC3WaxXMB9pWWLWBKE0kUPTNSJKkcuXEFgDNRkpTBbRBeG3Re8VC
7qNXCsyaQy3DiLI+V42kODjWzITU/THMyMsHN8QkLe082kvGR6SdhnXYlPgDHLWAnhwRwqzCfm1A
QCjBG3DLzRvERlBDNOiIcqKnl3PQ4fuL7/vJRJIKCHxP/1TNVQTaDA7NJ5YQhdUYWMRIwABEWOjC
p5xEOVUMWVbEGpOFRTpptKLKRipUWhxhNXsyj0f4AtkwW645KRX4g+vwo8jyKMCKw+CTFHgRWnDa
WzKkEw+sG9Dro3GhiJTdi2G7pzEoEdjDEYRlW1J4WMWz1hBlnFEgwO/yLc1Dr24K2jTNuzvQ0x30
IsJtAcyVQYZT3MrTMpIgp/2xPMl1PjyyXBkARg2z1y7rtKm9z9ILwlD6zVTdI7t80d49wMmlXMyB
tBMA3EL8BOJci6ktQpgN0Vaki6gc10IUg85IzXj117coJDaiAkuMWufRgwI0XQ8pSV5EVME92mgl
Hb8cjf+Y3EtCml+IZcA4KrSurQPCZNq80Jw1ZTL3m8lVDceV0Fcq0cHrlT1IlNGh+1bv3UA5aE1x
FUUjuM8JltlDSEzeTCRU80fwQ134q19vhEr8dV+oZKQY0tZHBRIPVUKwzOBwrNVuFN2sGqGn6g7j
ldbe9VO8q1tUJDG8JajINSMWPow5IUnxTd4qWNe9sE2WbdrRJRbme4zt3YN6NWF5XayLcUSuvV0i
BkCkbZNfvZMkDGNB9E2BFWMSxkfCVVulQuERBswSZqVtjcO/AtoitheJXGPyReM2LMszvMGxXNfp
SGDkzeErLj8r3kEdPuGvfcPP6+K8XZ9Lg96ndN4iEsT/5XXCMRzfqqRhLW5fmaScxA3EVGNkGwZK
Q7Zfpz2r82WF/nXNPg7eZ7UEMvVkWv5SEdwAhgKp1pFju9xh6Evl1XRdEJ4nq5DlM87khbkE2YTN
T/agR+MASNpLSQjmRqYp/yvmTbXZv6Tf/0RTfJVmUH5N/4UTiGzUs31ZgHxj/GurPh3BbJZJR4bi
+wVnJjyr3X3Ucm5nDNjNO33icXqrFVZnRZVGNnzP0L1XKjtEKX7jhUOp33RcwmjgwIVguBRVaGZX
GkDSgq0BhnaJQWZVJsaKG0Sq332EzKjoCcTSccxfCghd9YVWc86BOr3EZOWBgO5EfybW9ASJRhBp
fBxH/y8LVTewZ6t6aTbO3biCJc1aS5gF6aS8x2FtAp62YNj8xDFEgI/GajlVW2o95L9p6aHFYrI1
Ma0dWS+mTvM8UF0QT8nsh7oUB/ucT7LEzl2Iy/ewa/SUTrt2gWmATfn06+zchnbITO2sTm0gAaD5
hcO+zsWW7OlUmsiGj8Ce7AJRTwV92sJCRiGe4qd01DUd34HORNLWZZsG0TPW6h2oVFWFVJOGQH+C
Z7Y4taR+p27mXrR+MLUGbRxu1yrMzRXty6HO1tZ+1rBUgpkG0p1mX+X+0Cm8ZlAaYbzQbaU23myi
Hbyq0t7Qm1K9WYTkaQsw7eZFbmad1SsIU8+96boc1P8kZUcvK2v9zbvnu+7dNubY5ejC7M1fPG9U
RW0RbWRtbshshtds0pP7FicFx2/IFRPL5OPTror+hXD3w+n/vHDbDKgtYAI1Ft6EZSBVxjIGz2dS
fhep9Gkj9m8UJ25RdcgXdwOVpOdWrtyKHSsS31NnpF8WJ85mdvF19s0U72N9wubBwFW4CyOmfr9q
lSccx2h8PnGN9HFnuaZwbdP//ucsD23qltYH3O5Sduca3wonL1bcRuZJjN2WFHLEsRDdXUxzDW7V
htAuN+UcBiSB8eaypV8zD2HDWMbZa6WfjdF/nnJnFu1y6MVVbdeLDeVDHo35pkkwB/EbXgxIL3My
txz/On4RUQK2B6XcNc8hgAH1l3XKUxiJHzjyLw7xTe1bbdrm2k516ZjcMWEvPB706D1iC4bhrA7Y
t6VinHqKFQkRTHdFYo/ku7W9vMUIQKwfZKK/SHdBjeiTg83JfLB0LznfbolgYu8/bhdlvVDcYhP2
GBvnQE/upEoKhj2uBbSjOffaIXYLe47n9imbK7tHPY+lBqHvybEOSYf3d39uQcro0eWyZ88hOVF3
2f0wxgXjsnvyhuVzq0xz6mt1NLS/dd8cEHR4Uoj4qvL2MNfnNs/SaCKrj48nk5/0ZAb40EP5c2r5
/A7nlSe9l1cRmj8kee94mRcPmifmBY/pGew+222y/90Leksz96ncIxHzMHDPee9t+q9V+cLCrJub
euyieoyxUu/Gt7u6ek4Trk+r+rezCO72rNMsr8PaNDmcevl6I54HXnjC+VVJOWLLekwLLP6q+yfL
2uRqO7K7MbSLO1txNwNMwRlf4Kd3WlkafLsPfLPDe7pn+wfNMbmft77/ex9rUHvbuQC26GuPY7df
JOrorKlB++7mdITIeqemOZujsa+n+nkjLLHfLsh6fa2PfLpzOZf/Dld/9UCL+0Bj+KT3DJ1fpztw
ud9OJk0BfeJn/huHq0kW9BTZXoGp+IavsuZ/p0KRhBtD9s9Lzb2akiXBIvNZdYieFhDb+LUKfuyo
d/8j2v4G7f5gQds2+jAk0ZYQonTka5FtCXYISAlIIa8ENHPsPxiK2DaaJ6ihZjmtL0zG86nSnXyV
yN2DCA9mS+FEw40l51u+KC1WZeNMJHVUJgrZqbqkSa3niVWOsy4fGMAtC9m04eyoWW+AQfcLGIOH
i8SzmB9e2ZSZjkCgldpg35VgYZWTWCIWH2MfpSHX4mVNp6fLmplURcjd54hek2AH2AfpGZEo6l7s
yFOhEStbIG4Gbu5E5pvOMF6Jse4rrW4yr1VpbdcsxmmYlOTvtbaNpYTqCvLylWsOom0jNTMJHCen
7qaz8w2lFmwOhYBFMBPyOfQlJPkA7kJHcB2HFvP/eogrqGygCWvsuGHbJuwixg/gDE3QJ+MLK4EG
ySAMofDduz+b2qhDEy1dMnELoZBa2WlgGhm9XlppSQgTyWMNM/hUwu+HkYrdgFHU9kPiLRI2E6I7
CaqkyahaXTp61hVoOKpjptzLOEihorRUIn3tSavdGUQz48T9GPagqaRNzWJUsdQUVHh+mKb05ano
p2GZ5mY9W2NhN570QuE46rVy3VZ4NzuOte8Q47v8IJdKFhjhxhpspSqxCdIM4oAeREFMV+kYx7sj
iampCYhR7d+LTg79k5jD5y4Ol+Q7Kk9yxNQlpSuzm7LRFrpYSdJum/12bNiyg4qG9i/0YYt8D3kU
/3xTbUb0UD5P8j4uxul11BubW8x51XbL7TYgQ+GlBxwS+hiIGTTlXIZdVIrZ98wXiTjYD3xuQTHD
aX/9NdFFH2qUXxjdEegOhhO+t6FxP7lY0kzXadZRZ5MZI19Yq6l0mXPhLJhAh0zx5WFFTzUxy43k
qHjXj8xBZ94yTW6VIlbB3YIkgxRyxSJwbfxUm4Wq0RDkXnwQ6dSIuk1GI5XrXGgblFr+F5WUTiK2
GFpuWCnNfOMBWIkKOvZhIoGp6BVikcWUmch+EK6JI3krXhUphlOxFGBMLKBVZ4uJcdqnbp/uJMsy
8pFIS6N2MVQoXZ/+yeWcTiqqHaYF7Qnhm8S4+f+egfas+qo5PZyKSqrf2Yibq7O+cucFbCV7n3J8
bicJlktCW8mzuen5KHq5XpvZDafK4Y0G41JSLKuj1IihhbG5cmulYgmR7Ru3MtatXzKiAq+s9Qpo
nLsvQQqkpkWaqVSiHoBzwAUMS3DABg4nIDHFDVs8AcQPXzzxxhVr/HDEHYv88cS+OQyAxxyTXMLJ
Kbs8ssoc4xTLyx+/U3PMEmOAs8cou0BxyCS/TIHDAvCcwdFCw5x0yVQwvfPIKCfBNNAWMPyEy0Hn
vDESLS+9tB3SlWuwkPmiqTCJ3oY1cJRUvittur9SBneABqndmL6N0avrMa7OzOpck7ga5Nh9lZ3/
zXrfpG2tusi2uamXX+yNT3LA1j03crzFDW6t6/6qUEt3k8RvHo8VI2Lhv3ij+C5sb06rS68R1ers
XcYiOpuXHxKrpv++fhwd/coKeVYLlvAPE8N+ooe+rv/upZ2KhlZcZ0MVlfe0lO7BrO4acibhHGPV
Vx302OPXPRDDtX1bl6Li9nwcearZPfHMXc/4W6USEeaTazr6f3nGkJ/UCYNc5Trdue4QHNJB732W
mpSLJvet53QvWAycX/EqWJ/xjYoZx1uW3LAwLLMNCWFnqwYCDFAAA6jQAAJg4QpbKMMY0hCGNpzh
DWuIwx3qsIc5/CEPc/jCIBLRh0UEohGTiMQb/w7RiE1c4hGjqEQcPlGKUJwiFq+oRSvOsIo+fKEX
t5hFLq6wimEkoxivGLbAfOhgiwIMGZy3L4DsBBcSPGDngoE7GPmOSb7h3a6EYYHKFSFPEqwOXCpI
sEM5xY2IOuEFNgI6RRpCDSCxiWEo+YxcyHFb8NOKs2qnyKXIzhb18+CMOukDwuExdeZCoAhS80FN
bsiQmaOMKil5BELSMlqbxI75qjSUsRkGeVWKCy91p7xOiO2TupvEFIKXu16y7zfUVNaXSpVLhsSo
WXXjpDMHscxLoOuaABpNH80phG2+6Jfq1N5DvikkRY6TEeV8p+USh0/h7fNB+LxXOKsJSP2g7/8O
VPua0hK6NYUelKEIXShEGxrRh0q0ohuDmkMzOlGNVoxoFP0oR0G6UQ9kbKQWJRlGTSrSk05sjQFa
I0xjKtOZ0rSmNr0pTnOq053ytKc+/SlQgyrUoRK1qEY9KlKTqtSa4qGeTa2gU8sQVRHSEytTdcNV
BVg3p2ZVgF1FSivZqTDDWVV1yMBjAc+6OkOtFZtL4EE7xKoRt9rTLG19KiSJRde9rpKvY1XmV+da
uFeS9a3xUStipbqNMz1Sn7FcjysJKKwCqg6WlGVDEAhIzMr2NayJbWzyZkUktFK1kSbErFlFK4XA
vpW1r5BEG7Fx13WqdrBijS1ZRURbdtg2r/H/IyZiEScU0+6lH8ANLmgJQbbC6mm5s/VXYfPlWmFN
F0RhRdNzm5AoxmZXu9ZFHAm7CyLVMhcN2cCteL0rvdMat7GxdV54YVve9o7WsdycSL4kUd0x7bef
HtxsWi0bYP/+U67qJTCCDQXYpTK4wQ5+MIQjLOEJU7jCFs4p+hKs4Q1zuMMe/jCIQyziEZO4xCY+
MYpTrOIVs7jFLn4xjGMsYw+DQxX3TBOxxnljtLEOjpE8xY57HK47pGojRs6PjYNwZCGvsr8Elk6N
kQyVJPeYykBSMpZnjOMR2QGFXVYcTLmc5DEf+cthA3OZv/zjKvNAD2d2KY7PfGU2q/nKcraz/5Wp
nBoyExnLVsZzn9n8FDeb+c6ARrOY+6xml9YZMIu+c5jnvOY3K7rQlm4zkCEtZUFLOs9OTvB+/hzp
KG95zUKOspxFnWUmoznVq/6zl/0c6E6vmtamlimrPf1jMsda12ibNak5bWseE3vYsC71qWvt62Az
+9XKnnJglmxsZ2u52Kzz9bAljcItU6fZrE52ogvN6W5f+tbUFjafxb3tbLs62NNmMrbJbSRrg/vd
sZSIt5PtblWP+9nzXve6l13rau8634AmNMALPnA4t9rTdY40sfeN6W/DO9PoZjjDs93qgFvc1ApH
uLYhPuc0Z/rhE984yu1N7kezvNHSDjmc+RpNco9/vOCxvjnBc67znVs12lG9cZE/zfMIAAA7
------=_NextPart_001_004B_01C12426.EF04A220--
Attachment:
gif00120.gif
Attachment:
Description: "Description: GIF image"
|