[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

RE: trendiness measures



PureBytes Links

Trading Reference Links


>  { An N^2 day test, with a perfect random walk, is expected to have
> > >     a standard deviation N times larger than a 1-day test.
> > >     So the "Expected" column is N, and the "Actual" column is
> > >     N^2-day_StdDev / 1-day_StdDev. }

The above is from the comments to Gary's trendiness indicator code.

Are these comments correct?  Shouldn't the first sentence be:  "An n^2 day 
test, with a perfect random walk, is expected to have a standard deviation 
N times larger than a 1-day test, ASSUMING THAT THE 1-DAY TEST IS ALSO A 
RANDOM WALK."

Since it's not, I'm confused as to why we are willing to base the whole 
indicator on the 1-day SD.  Isn't that arbitrary?  Why not base it, 
arbitrarily, on a 16-day SD, and extrapolate the 16-day to all the other 
time frames, including back to the 1-day?  Wouldn't that skew the results 
of all the time frames in a completely different way, sending some of the 
former "anti-trending timeframes" onto the "trending timeframes" list, and 
vice-versa?

As far as I can see, this indicator could be useful for ranking markets, by 
trendiness, in a given time frame only.  But the trendiness vs 
anti-trendiness line-in-the-sand idea, strikes me as meaningless because it 
isn't independent of scale.

I'm not a heavy stats or math guy, so please feel free to go ahead and tell 
me what's wrong with my thinking.

       Paul