[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

RE: [english 100%] Genetic Programs and Neurofuzzy Logic



PureBytes Links

Trading Reference Links

Thank you Pierre,

Actually I was asking about Genetic Programs not Genetic Algorithims but I appreciate your patient explanation. 

In my opinion you and others on this list are quite brilliant!

Sincerely,

Dave Pyle

--- On Mon, 8/24/09, Pierre Orphelin <pierre.orphelin@xxxxxxx> wrote:

> From: Pierre Orphelin <pierre.orphelin@xxxxxxx>
> Subject: RE: [english 100%] Genetic Programs and Neurofuzzy Logic
> To: omega-list@xxxxxxxxxx
> Date: Monday, August 24, 2009, 2:14 PM
> Genetic  algorithms (GA) 
> are  methods  of
> evolving   optimization of
> rules, parameters.
> They speed  up  the  trial
> and   error  optimization process
> by  zillions vs
> human  coding trial and  erro testing.
> In this sense  they are in  the  top 
> notch optimization  category,  the
> drawback being  that they  can  find 
> solutions  everywhere on  any data
> set. 
> Of  course,  the  problem soon arise 
> with  unseen  data,  where  the
> dazzling  solutions  miserably  fail,
> excepted  by  chance.
> 
> Neurofuzzy  logic  is a mathematical based 
> method  of  encoding / decoding
> the information,  that  work  better 
> when  the   raw  info are  not
> as
> crisp as  expected (  market  data are
> a   good example of  unclear 
> data,
> and  most of   human  activities
> share  this. In this sense,  fuzzy  logic
> is a  privilegiate  way  to  encode /
> decode  uncertain data  for  further
> easier treatment).   
> 
> We   do  not  use  GA 
> methods  to  build  the  neurofuzzy
> rules  because of
> the   overfitting drawback  above.
> So  we  do  not 
> have   shining results,
> but  the out of  sample    real
> time  data  will  have  better
> chance  to
> look  like  to  the out of  sample
> data  used  during the
> development   test
> phase
> 
> Anyway,  one  cannot  compare  GA 
> and  fuzzy  logic  since  they 
> do  not
> belong to the  same  category.
> The  first  one is a  learning 
> method,  the second  is a   method
> to encode
> the  information and the  decision  to 
> be  learnt. I would  be  like asking
> if GA is  more powerful  than Bollinger 
> bands  what  would  not  make
> sense,  they  only 
> have   here in common the  fact
> that  they are used   in
> trading, regardless to their  results.
> 
> One  of  the  most difficult part to
> understand   with technical analysis
> is  the  part  of  illusion  that
> is in it. GA  will  improve this  part
> where  neurofuzzy  is  less 
> prone  to  that
> (because   fuzzy  logic
> implies  a  logic in  it  through
> the  decision tree,  what is  less obvious
> with the usual  Neural nets  evolved 
> by  GA.
> 
> The  perfect  solution  will never exist
> anyway. There  is  no  method
> leading to  that.
> One  may  be  happy  with an
> approximation  that  understand  most 
> of  the
> obvious trends  and  do  not lose 
> too  much  money on   noisy 
> data. It
> could  seem  simple  to understand, 
> but it's  one  of  the   most
> difficult
> task to  make  it for real.  
> 
> Neurofuzzy  systems   have absolutely
> NO  predicting  value. They  just
> attempt  to   follow the  trend
> as  close as  possible in any  circumstance,
> what is  sufficient  to make  money (
> to  figure it  out, think  to a
> centered  moving average,  but  updated
> to  the  last  bar).
> You  may  see 
> them   here  as  a  kind 
> of  sophisticated  denoising  tool
> applied  to  the market  data serie
> while  maintaining the  minimum  lag (
> by  comparison,  the centered  moving
> average has no  lag and is a perfect
> trading system unfortunately for  past  data
> only).
> 
> Because there  is  no  other
> neurofuzzy  trading  program  over 
> there
> (unlike  GA  stuff,  widely  spread in
> the US),  you  will  have some
> difficulties  to   get  some
> valid  feedback information...
> 
> Anyway  you  could  check  soon 
> the real time results  that we  will soon
> post on the web site.
> If they are  good,  there  is 
> probably  something  valid  behind all 
> of
> this.
> 
> And  if  I was sure  was  not the
> case,  do  you think that I would  take
> the  risk  to  publish  such 
> results after 20  years in this  business ?
> 
> Sincerely,
>  
> Pierre Orphelin
> www.sirtrade.com
> 
> Disclaimer:  No affiliation with any GA  program
> since  1994.
>   
> 
>  
> -----Message d'origine-----
> De : David Pyle [mailto:dpevergreen@xxxxxxxxx]
> 
> Envoyé : lundi 24 août 2009 20:49
> À : omega-list@xxxxxxxxxx
> Objet : [english 100%] Genetic Programs and Neurofuzzy
> Logic
> 
> Dear List, 
> 
> I would like to ask what I hope are fair questions
> regarding genetic
> programs and neurofuzzy systems. If I am too simplistic in
> my understanding,
> I hope you will take the time to help me understand.
> 
> Here goes.. Are these types of programs super optimizated
> systems or
> distinct systems? Aren't these just brute optimizations,
> how do they have an
> advantage going forward? Don't genetic programs and
> neurofuzzy systems have
> a danger of curve fitting also? In other words if they
> don't have predictive
> features then aren't they just really good at curve
> fitting?
> 
> Thanks for allowing me to ask honest questions?
> 
> Dave Pyle
> 
>  
> 
> 
>