[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [amibroker] Re: Slow Stochastic moving buy-sell levels



PureBytes Links

Trading Reference Links


Hi Tomasz;
Thank you, very much for your time, I know that is a valuable commodity
.
I do try not to take to much of it, by trying to accomplish results
independently.
Have a great day,
Anthony
Tomasz Janeczko wrote:

Dear
Anthony, >How can this
be if I coded incorrectly.The
difference may be so small visually that you just can't see it.With
certain parameters sets you would need to compare the numbers tosee
the difference. BTW:
Dimitris obviously understood you far better than I, as hecorrectly
guessed that you want to get an EMA from EMA :-) EMA.PREV
- formulas using MS' PREV could be rewritten in AFLusing
JScript as shown in thehttp://www.amibroker.com/docs/ab400.html Best
regards,Tomasz Janeczkoamibroker.com
<blockquote 
>
----- Original Message -----

<div 
>From:
Anthony Faragasso

To: amibroker@xxxxxxxxxxxxxxx

Sent: Monday, November 12, 2001 2:21
PM

Subject: Re: [amibroker] Re: Slow
Stochastic moving buy-sell levels
 Hi tomasz;
Thank you, As You and Dimitri have given me valuable
information on this subject. I have discontinued my journey into this subject.....for
the moment.
after producing;
graph0=ema(c,10);
graph1=ema(ema(c,10),10);
and comparing the values returned by the code above ,with the values
of My Custom EMA with Decay , I found them to be the same, How can this
be if I coded incorrectly.
One of my original questions was how to initialize the EMA.PREV statement,
when the code starts with the close.
Anyway,  Thank you Tomasz;
Anthony
Tomasz Janeczko wrote:
 Dear Anthony,
The reason is that you are using Ref(
array, -1 ) for PREV.This is not correct. Ref()
works via shifting the array back/forwards.You can not use it for self-referencing
formulas like EMA is. Therefore
your formula does not calculate correct EMA and this is thereason for the
difference. MS's PREV works
in such a way that the formula is re-evaluatedas many times as the number
of bars loaded. This leads to extremely longexecution times.
Best regards,Tomasz Janeczkoamibroker.com
<blockquote 
>
----- Original Message -----

<div 
>From:
Anthony Faragasso

To: amibroker@xxxxxxxxxxxxxxx

Sent: Monday, November 12, 2001 1:15
PM

Subject: Re: [amibroker] Re: Slow
Stochastic moving buy-sell levels
 Tomasz;
See the Attached Image, There seems to be some Difference, that is why
I questioned. When I placed the formula under your explanation, they appear
to be the same.
This is an 8 period EMA of the Close.
graph0=EMA(c,8);
 ema_today = factor * close +
( 1 - factor ) * ema_yesterday.   value1  
=(Smooth*Close)+(Decay*EMA.PREV)
after you find value from above code, do you then continue with...
graph0=EMA(value1,8);
Possibly that is why there is a difference in custom EMA and Ami EMA.
Because I continued with the above.
Also, I know there was Discussion , but how do I satisfy the( EMA.Prev)




Your use of Yahoo! Groups is subject to the Yahoo!
Terms of Service.




--------------19826662D66D1BAFB278F57C
Content-Type: image/gif
Content-ID: 
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmailFA.gif"

R0lGODlhLAH6ANUAAKCgnWloZra2s8vLyHx7aODg3/b29vn5BerqB0REALa2CnV0POPjHoiI
AMrKZ9PTD7S0W5aVN/T0F4CAAr29H0hFdLu7APDwPe3tlf8AAO7uABERAGZmAMrJIczMAL28
MN3dADMzAJmZACIiAKqqAHd3AP+7AFVVAP9EAP+IAP/uAP9mAP8iAP8RAP9VAP8zAP/MAP93
AP/dAP+ZAP+qAIuLij09PU9PTz06iwAAAP//AAAAAAAAAAAAAAAAAAAAACH/C05FVFNDQVBF
Mi4wAwEJAAAh+QQEMgAAACwAAAAALAH6AAAG/8CccEgsGo/IpHLJbDqf0Kh0Sq1ar9icbsvt
er/gsHhMLpvP6LR6zW673/C3ME6v2+/4vH7PN8/7gIGCg4SFg3+GiYqLjI2AiI6RkpOUk5CV
mJmam3GXnJ+goaCeoqWmp4mkqKusrXSqrrGys2GwtLe4rLa5vL2cu77Bwo7Aw8bHgsXIy8x2
ys3Q0WrP0tXWYNTX2tbZ297N3d/ixuGDIBYWHmMe6CCGGuiN7BbuY+fpZ+z16+3m6OpqzgFM
k21Ig0ANhCQYk0DIQUIlhjRqmOOhmIQ5FpLxMMJhGYoWAWHUeAYExRwjBvrRQtCjSIUMXQrC
WK4OSDIjyWjYYPCjzP+XGdF44Elkw74yBX/uySnm5iCiJBw5vQhzzEgNZqYCJekzx4YQQ06g
SVoRYdVJGiRKVfqFqZiIZTW5LaOhBAesJ9SunMY2z1xB8MRY0MtIK5i/XwxTQnwGLsu9LeMK
zuuVg8otGhp0zBEipA63HhKIrldCtAguIkSX0JFaIVYuIDhs3nBCBAdVJcAqXI1Zs5DOXlIn
WK3hNhkLlDdY9mI4tpATHhhvCU10RAKAoq/rIDHiYekEp7vEJnoiapfsHmJ33BAe9u0c0Oeq
V9jgtZedZ5E+PtNTjIgj7emggW5EhGAfU/hJNhVGIZwkBAdcDKVEGA4GJSCBQxjIxVVEjfH/
nxEBagUCURnm58VgRViwxRAWYPSQViKQOASEXMwoYw77jFiEbiRJWMQGlw04hHmQjdXXFihW
1CKLXFAUAgkk8LhhVbrRuMWCBTZAIBebjSACCSdd1oVtBoXnJJRSbjHSSYIZtKQQKl7500nW
EcGVFyD4llED9RjU31QezGhBjEK0VxQHjllEp4MkbZaABSTcZmWTM7bEl2SJPcjFexolWQ8I
TH4G03saUioZTQ+RoFagcGJGVIBfJMmFp1uA2qqoQ3QXJxgUWcmpqRaxmgONPt6ZKaZFcEBC
PVNRJtZ0QoxQ42/16PaQsMQS1ekQ9h21xYfD8nWpZ12EqoOsuHLl/9RIH25gn5ynnoUuuvCS
2wW9c62b4bvY3HquXlgKcaCJx4ZEBKxTDdmFbn36q6/AU1qYJKzMaSpuZPb+ewmTWjGFEYnk
BkwSurbGVTLF9wL8k8dCuHscYTqEOpWTXUgHbLlsOZUkEnGa6xTNETeaKwci8KsDUUbrN24Y
9K7YasdV0TSEy+fJ5Ba9lA1bAlFUM60ypixbOEbTMd86c34214tzDrverHESPTvsEkVcgXZj
DrxNa2yR/B1JNscrR03EZpPqIPKsegn5o5gnfh1S2Hs3vrHZMtFdM8EVI+uv20k2gM7n6Lzm
89xo5wdCCZsNkTccZGWclhD7JIkVXJNSxP8bTQZu1vbhSCZ+m3Wi8VkGvbRXjbeamN83ROzc
qr0FXBtcLjaFP5nrdtk5oDwt225DL/3eGkTZch2ti2FtxCFsoapXryVo3sdYfaiu1fLq9Z63
w+u1PtXuIz+9+fTjzPXAtSu4RO562Gub83TwK8yMQFnb25VTCMgFA46pC+t7TJ4aILyLGSkJ
6muZiiwAFS5USQPF+U3QTNUe3r0NWJ/DHxiadsIUCtB/B8SgCM9VwgUerWUiQM4Qcmi46m1u
gcI6AaR0Q7XRSYZrQcyaRjwAFu3Y8FlvUyDfVgLCLbwnWV3wUVEGApqWvcaF9MpgEUZApBkS
RoxTI2PyvvBFItT/7idqbNkcfWg9H4JrjBG8Xh69UhXFLQ5xR9yifrqovtR15ws2fM5R5gIX
3qBRLyDIC4YU5rVLRBI+k9yjF7iTK88YhlBe4aAotdLHImLqXA46wVGcGBJUbkCV02uAjLSD
SO55UA/sYBwX4GGBpPFBRxZBh7PaQExjsiGYa4gHI5oJB2nyo5h4qEksMNJGpxFxHOTYDzMY
RILXeIAyGQMnMrTpigQdoVTqjAY7XTGeH90lntWYpyzuQQ98XkOf/gxoKQAq0IL+QpwGTegt
CKrQhkaCoQ6NqCIgKtGKHgKhFs3oQTXK0VFgtKMgfehHQ0rSiY60pCi9aDQOIIGWuvSl/zCN
qUxnStOYHqAVB2CATnfK05769KdADWpPEXBTPhD0AEhNqlKXytSmOvWpThUDSx1A1apa9apY
zWpVIcDVrnI1q151AAOK2oUDIOABFEirWtWqAAoooK1vjatc3+rWudr1rnLtAFG/gIAOfOCv
gA2sYAdL2MIaNrAdkEAfAMpSCQj1sZCNLE8lQFYv5NQBAMisADKr2QF4dgACGEABRjta0Rqg
AJ/dLGdXy9rWZhYCDlCsF/oagQUsIAK4va1td8vb3vr2t8D9bQT0alkGQKAGyE0uAZJbAwIs
l7nKJUAApjtd50IXuc7NbnOz69wPIGCxJ0XDVLEK26169bxhRf+vetfr1cSG4bKcVW1mU7vZ
AhjgtKgVrWftW1r5uva/mY0tXymwAOoamLo3OPANFhyABTM4wQ4+cIMdTOEKL4AC3y2rcaGr
3e1ad7sTrrCIb/Bc7lo3u9WNQIb3oM+pAti1yc0scztcgxcDALkyrnGAZfsF+GpWs6H1rADq
e1/8ohYAAygyaVE7ZBvfmLMCni2BESxhBI94xCG+8ohtcIMFKGDFW8jpcTn84TI32AZcpvBy
CbBgNHM5AGvernKpSwAIgDkPLb4AZp2cY+W22c2AJjFndQzdQScXAjwurgP8C4DQOrqz980v
f0m739OKtgCMfnGUu4CAKYe4yllO8IT/rUzhUGvZwV6+s5ivG13snjnNIl4zhdGc4OfOmM52
Bi8dDqDnTL+4Bq8GtLBpHQBC1/jYfUYuot/LgD1zVrRDHsCTkWxf/EY6yKGtdmkvnWkdQznR
W+j0AiIc4emKOsJrNjCKT83uVBcXAjc29q1vQOtTp9vBxLY1d6uba6OG9wyXZbSx+8zmYRtc
2MVerbdjDIBlgwG+jr50jQWA3RoMmb/7Be2Qs01a/Gpc2q2N8aa5IG52M5jO+67uuk0uYndr
GN44ZnUA3ExvWI/4uVnmsr73Xec7Z/PfZuD1olkbc2PP/OBIp7m3Q17jkWsYs9m2NMWTW2zn
dvbi+W10xy0N/1ok+xrHTtdByUtt6nJPt7nmpm6Ny95uDL873seeMc1rfmoF4/sG0TVxv1kM
9DIIvcmGVjiwk054Wi+d6A0HNxcgbloDUBzFcIYwAYY88c0GudIFQG5oLf71HQ943CwX9dlB
XF04Z5btWr6wqjeMY7jf+Og0rzeWDYzvN2PXxD3XdRz+LvC4D77whce7phUf5mZf/OLxli6c
2Zzg6wJgugBAbQ1A29waf7zR/w372E2u7nk7V/jPLzWWUe32lxs6xgU3OLtJDejl437vesjz
opvc+xrQnfA1R3oAhs9sqN9YAPn1eGfXYHP2XPQWAJQnAB+GfQCocZmmfQTGcgc2Y//AJmgJ
xlmoR3sBoHpvB3fMBXt/Rms2J2KkRnfux13wh2d9Rwa8t3GC93v5B3xIN3n/5XA91myuN1qb
VYEO9mEnJ3nVB2wNNnmZRwCr9YCKt31admBWB3cJt1lPCAAkSGXUxYHmR4HNlX+1N3d1x3zt
h3u552+71mtAJnhHF4MyeHA3gH2tZYPv1npwJ11ttmDSJYeR92bm9oMBIFr212BI1nWrBYGg
t4TKR2fVBwDOxXH/R3knB2rTZYWLZ1weSHXDtoXrB2cTRnNrZmsp+HNj6GwwNnNziIaxJ4P7
51phV3wOAGzNhYf0BmF4qG4NRmrudwObF4WomIQROIUMVoj/Zydd2wWAReZ40TYAbOaIEwaJ
xTdm0AV7gZZmXDaCFVaCr1hs0NWJd9BiOAhgfRh+pCiCaYh3SNh/9ldwEFZ61ZiHC9ZqHuZc
+/d4XpdwrCWIUzhqyteL7icAw1hkV4eMVVh+kciMHxholnhlVHh3NWeNMYaNzrCCYyB0L8Zm
QyaHpBiCptho/pWKOiBm1TWN3xeLhth6hFaHVgeFkyddj/Ztn0d2VoaJ5eaO07eP9yUAcGZx
Qph2tNdlALmMrBaDFTlrsEaRQJmQ18WQ5OOQUqVn/+VqXSeEMViTzhh8bKiSD2dckweDs4iT
KBdjlddkI2l/wld9gOd5UlZgokeL/5nIYFlYA9Umk7O4dueWduS3egKJXeE4iud2ZWimkIfm
c9mIlO+llDCGiPvXdct1hvL4e8AnjvNIfBt5AcdFk4GWlRK2cE+2cYD4erOIkf/XmJ8Haj+o
hd+3hzJZZALwZjcWly23kxvJegMJjupnc7DGdmk2en2pe3AAkQBGgJ4lY8q3XD+GiGl4ioHo
mEIHYmgYl2encJ31WQ5IcTUJgEzGaIIImuc2dxMWfaVZZATAZcjVdnR5XVrok5WIkLQpajbA
l0b5CoBZlaB4hFKYnl6ngNZ1dZz1jcJ2gK2lkbyGAc+XfpVoiIMWX5dWWpTWeJGWmWTJaZ4m
YQ82ngfYlv/bWQAHKJQjpoytCXPKBY6nlp/lJmKuqHO3KYa7t43MmVnVOH30qWPYplo1EHzr
6JkPdwH+qZjqV2vy1llLtmSleWRHWJ1MmJPPaAMAsJ37+KJ5eWUYKmZPhlyiSJCvCJSwJnsV
5p1eSGIjynef+GI0h4D1qXX9pVpRWZ7gR5U9BpnBhnRq6Xwct6MTimk/qou+iGL3SIrvKGRJ
Noyj5XjklnqsuWobGo35qX4Wl1kAencImHn5x4l+2ZBb6nr/96Ju5o7AKJ1hin34GWiFaqbF
NW4wiqOFdnmXdmkT6l8CoH0fUIj7hnZbuJcWR2mhlaD2JQBRempL6pr2d6MBSm3/lBZvR1ht
kuqqytaoR7lrJspcSNadxBZ5iXqg9Pd8uppmnNdk/MkAEZCp7adyoeqcn7Wn2ylt9AeBqopi
TtqqzQefRWoA0kZdxGarf+qaAAqlkxlnwmikU8d8B5il8deeN7hn0BVa42lu2umsLpiJgyqt
9Heqxmmt2DqZtoljxbhfW9ejGzdkqPqbOGeNo0aUWZme1YdxNZmQqHerzBivXJiOoWaECHpa
CpiTr6ivKmis/spcQ+aTC5auRiZkgGdulVhvBPCc/HkB1/qp6vZcGCmxPGqvFat9HWBiaGeN
zJeHhZqI01cAN5anBtqd1EhhLheQzJWceImJ1YVddKid/zNpdaCFr2u6np3Ar4p2fjr2jLa4
j9ums4SZqXQItAs7tPhndgvYaEg7saWpt3zVARHAXVm4f+V6chaHp/xleTL5fC2bel/2dsll
syFYaySZbmenj+p6iJs3jcOKm2/ApJPYiu2Xp0q2ZPpFedMlqB76s0trnJBZkQEqth0GuAXq
pnoaphabhIb7YRWouDwoastlqdUGufuYbWCppJV7hU46pNgJeTNnhNWVrgMwvEbYvJpbA2zL
Om5rftN2t8JWA3TbXwynma3qs4Q7oxCQdCboau4HsdzKrXvqo3arsIUbAci6mdEbi9YnoRSH
s0p2WuFXdl27jE4IvyeIc6H1ev/aaZirRXdx9r1yEL6ROLOvp4UKWa9dd2ZYKr/rS2uyu3FB
6wANK6I3uXytV7EeyKtW27gg12hMe7gxtpkbPJvHq7rZm4inFWn9pY53l8AZCl0myMEsDLHY
BmwRXL/x2XzbZcFuoI2YxZWvhnfImqfZm2Vjy2ZeWJ6yi5EnrKxqaHvjamtL17xGKIwDMGoY
+bv7y3BDeGPp95JaZ8Ag3IC9SpNsR8SAernEloV4+KUR66sYd6BgWWLOJcVtoI3w5qu52qX6
WW3SJodQSmJpOndhDMczilnw+2ZzKrxwCJZPiHHYxYD6O1uGK8eCZqMnB5ypRcdNrF9IVrwW
9rxe62f/SoeIjQicR9uUNTZpGLfFijy6JJqbkihjqQloh2kD1ndfPQyMM0dneal+CGh5qXym
DmCMXXrFoIyx11WHVbe9E3e/GvfGNWy0ByzIDvuEgWtkqHVkUOi84Um2IniBwzu2uitk2zWw
2nZkO2fMWlqij/xkh+qj0jmTYiltcHiPsYmADnjCoFWhtiaKtbaVc1ZsoNWbrqdfvsvJnBa8
MTeLlgyNjBtkMKaP0wmd9Gy5NppvTDhxzvl4RmhfCArQyoVdjMwGjsxawWa+BUxadFy13Aqd
mRxo85nNltVrtGoDJnZ6Z6mtM/aHtFxxYMpt6Ay8Y2aoLpue5nh2+vWWEVda/7qrtrdMl3BX
kRIGnBxXyaZn040nfWgMs55I0D6df56rpwbM1vqVWn2It0l9wptFh1MLl2stkixKX746X6wL
ZGEnAR1wXDKmgdTVaFHrw46neUFWbf9HfUKMariswDr2xctatDLs2cA5zKT1eKy202vQ04MW
bKob1IhYzjsKhUdNc38YWhKtgFiKkYfJkuoMZBvtgKyV0Cut1FsA2ZL9tGo3oKlJYsuVZB8n
oZkXfZ6NwKFdxCMZbFGtz14ZhBEcbUcWhNdIrOwpswrnjLMdaQYMsW66rrlNa1Q9ABItbdI9
2d9Xarm7z0XdWqaV3I8d2a520cXmgjh2jFaXtMOIiP/QxtIXut1/PGMmeNiNJmck+cbFeLrZ
5dq/5AY+Ntl0197329GlNZO8DNjOed+V/FzQacvzm9j1y9G/+tEDDnOjZmAMSJj2+KreWmTG
OH1CVqdn/YbO17xV5stylsW+y2p0/ZfqPWjmaAN5jWnalr2n3Nc7ON/0nV8DgAG0u82fVdvT
93zR3YvC698Zt4M0i3Gz+wXMXbwWzqp2TKr8qNGzurVdJuG4+oGUeZbAWXEyfaDn7OTN5eGW
UqLOtllTDtTSlmT8NdTNBbguarDqh92eBeaBiQEzbV2Uh6K1GePNKbFszlwB3r4hDQEWSoIU
ec+idrQ6eLOrTeRcy+d1mYX/5whqnPeWMk19u326t4foRhLlG9e8XKaDWLvFIhnoVGeR+anS
mU67nO6crld90yjVvzzmoHuZH30BwBsBn22Jlo6dKldwEN2bqw7a4WloJP3nBqaiK1x5k85k
hr7I6N226l2xxUukqKWnqgV4S77f2FqkpaXpMzrtztnCi/uStpbtA8yKaKeyye3tcN60ODmK
aahzvOyd2HyTEY7Wq3XZlEmZk9eUJdlkowrswX7v4CuzFcvopTareZ2gLgqMZOvswkbw0b7p
9TvpnOeNZJfmLvzzDV/cmEnxquyLIbaYFNa4iSxfTtrHtr7eb6mqEsaZSrxxZG3oUczyF/yJ
Lz/P/xCmjzRZoIX+m6qFr0mn818u7RknWlIojyke9A3/xl2JmdsWsUjPaamalRYKv03/h91I
01Hf0uKrmbxO0na4nEcYsfzManrn9VOMwWHG1Jjp2+fIsjNMevIopiMMaOabXwZ/ppy+o5g2
hMdWj2nOhpgZuDO+9ySXquL3odZckzJNkxfYsrJGuSDv3OcqhO7YfUBWjNsG7Cdm76QL4r3W
87O4YKqLbdineRq3uIQH1Kg1+kuNAaY/WgBQb6HGhOr88gUqq/UL++HWAZ4qmz/YzoQ8z173
gbbK56uo9NA32Une692Kvlzf4ZIPBDrhkFgs5nJG5ZJ4uDgGUelAQLgFAv82goE7KHwFALGA
HAZYbzb1mq3eGr4YydKJ+d7vg1r6lrb1+7CwCAhqagDKqBAVEQG8pqIu5ooQOhba+tQA/QIJ
CQ3FxGoGawgDCAI2VfsWFBCKDhggBFFPsUIBRgV3Cx2l8AZyDYeJSwshXpmUl4eQmJ+doCCj
dFNtALgMFEHLzEb92jAJCuAK5Ogu7PDWB1I5AXmHEcOMd1MFvqYljSojwDXXbBrk6dOhUO40
BVq1SU2rZENiRShoDNW8MLXsfRIw5Y6AYh8NEUL2jKQSZyWZRItSAJKAXX0GZGPJkgoZUVYS
ZgpnIwC5OJOM1Fk3dM+7QLTkOQIg6IpBR/kg7aP/1GHWTjanChFDRUBUSGsB+Sz04xAWgwhO
hZWq0e2MvYFrpWwMBvLjsYcoS57EG/TJSppeXLpL1TObTJb0cIL9d9WngXNKhA7FIwBQzsGn
klIBdWgjnEf6gA6ptGBxOK5Jc6EqhogA2JwLbZBtIstRmbScy5QSHK+RQa1Z69YYuTdvEuKw
0nn562UpqitZAhSWSQ+hqnB+CMN5zFdduaEDKr8mxU1K10Vypw2QSgQBhUtW1wTofYg+NzJe
Wi+ubD22q7IQAKDJJnlsIqOWozAzxjenFKRruOOY0QtCHeqAZCYAmnoujRqkK8AjNDJhiA1V
CCsAAAgYQKc777i4wx1w/+BJ0KD7vCEEkZlA40cB0uBbozYzxhhjJTiyEHE/62SD6IkA48pF
lI0GPJCUm9aiBy21QiHmwQmZkBDCOmybAg1dEquhptSYgjFExQCJyaMIUoQsnS+kk8mAwRZ6
i0CbxtgImKhCE6K993rk6bMo/PylxSL/MKpRhpIUAkzlEM1yESdz0ZMzIc3LEpTbtuTSJOO4
jEYMzEQBpJAA9ghokFe/KlSVtQxBUUVy6vTushef07TPRCSjVL1AdUBgR/j+waacZVukswBG
w9MJSf+aSMdPqMKgZyNheguywPI6tbQr4e4S1QgvjzOV13VHQSUgrm5CqNBHBRIuTu5y7UIb
BP/X1RQUjnxiR4r1RNuxNEz+wBXXfAsI60iHK4tUCGuVE3CeIM/wZYoPbzCTJVxC4ROXWok1
txlSJ3QCAoHk7cOULNaAlzqdehTrDzhVzJcKAyjrNc3nPCHmqTsMy2NgYo3lMSD4OMy3MAH+
SCgnejORWAeK2aHRSY+qxANDTbDxEGSLxgbAgZJN1gFd4iLq9RuaWcVixE0zPRjhVf6Y4IGc
c+3MJaAx4neiRX6R7C+CBXVPP/gE8C7gwmqIGqBoV7Ea66yZq7LPgAEAKADAgLTINlzOTntU
cyNi1Ule+fAkHNXPoBlZqvnAWU4Mcg2Gi8Cw8sQtfy0qXGDEizXY7uv/HiHaMGhhW8hyDPxa
J9Fsw2wx8k1qOKzAbkQWo3TTj0D5S7OyIqAKjAQr5GCF5qV9E9vx7fCQLngp/+WBgkZNjIqB
IT7p43cyjpVQARgQc5TzqEWE5MTkO5RyEhXkk40iZeJzAuIeW8bwPfCdDHUPiIAgDuE7Vaiv
fbLCWx/ghxzcSYdrPsEIcH5DkInQxwuH4F8+/HesEq4BH48whJ86h7dGue8Gz4uC4z4zGSiZ
qUUO+0MPa8K9KJZBgxtUm/jS9QClDcMW/yDhDndis5vdS4XS0QMhcDWAWsAQJATBTRi4gCX0
RAJpOgTj56Zwo2fRjoiPeh5LHCcZbSxiYeCh/xo24iLFC1Zxg2vbywG0GB8saOgqowBjGIU4
Rr51QRQBaNzuekeXj4hOWcYAGRlySCgwZm8aPZOWAV9ZxAQOYYFwaFbA6EQFLxQmiAzJ3l8S
cUEyMBJ8jsQLJAmlkFP8I26XvM4VwhKQFFZrhWJLzQ2UxYUzzJAuogvGJ0fxqRkRM2nOfCIw
9cDHRw1xaUaMSWGG0qw65WdWUGkJlLpBTNMZEyXIhFEqzJcYl6HBnDHilSb0piJFgMhl0jkD
SMY1jylkT5vA4ZbZ6qjKOyKqDLC0juzSYMRPdggPLTIjLH+ZHhpNQZ9p42dJIOkPxXDFOYAL
TwkFxzpNyskBoGDoKf8WBoeLlo1w5WmaAUox1BOR046XxGYUiyIW/tDLncwyjEnplA1X1tNo
A8SnFFpqspeS5ADGmsAC0IrWCEAAAhGIwALcGle3ppWuda2rXN3a1rfKdQKznA1V2IpXt2KA
sIXFgAPYmtjEOoCxDjAsYg2rWMk64AIH4AcF3koau27WrhBobGY5G9q0ToAC5dKBBAjrWMOu
lrWRFWxeW5vaxqqWsmgTKxaz+ADd7pYBvd3tbxnwW+EOV7i9Na5vh4sAy9IBAcdFrm4lcAHp
Tle6zjWuBKJL3d5SVwLW7S12IcMACiiAvOU173nRqwAKSLcD4yWve89LAfnCV73zZcByi5D/
3exSl7/9rS5xH8AA//ZXv7a9rekOkGAFL5jBDXbwgyHcYGhAWFT4hYiDlVFWBGyYwx328Ic3
jF0Qj5jEyrUiha04obGmmMUtdvGLYRxjGQthxTO28Y1xnGMdNxK3O/bxj4EcZCHXWMhFNvKR
kUwcIieZyU12spGX/GQpT5nKL45ylbGcZS0rucdb9vKXwRyhLoeZzGX+8pXNnGY1FxnNa3bz
m2/cZjjPmc4plnOd8ZxnFY9Zz332s6ju/GdBD5qDPv5ABSoQAUIv2smBFtUNcBBpHFSA0ZU+
sqMnhABJS3pvlvb0jzENIQpsOtKK/jSTE4znUB9n1KRewKmRrOlI/1fAwm5eNXEiQGocvBrW
RT6Arul8673k2tW9LrICdN3pNwsbL8TeNK+NDeQF6JoCc2Y2SpwtaWhH28eQJnW14XztkmQ7
0tvmto69vWlwL5vPLib3rs/943RLet22bne6NFxrIrzb3Mw1cak2nOp+Blzf/SxrwWER8JQp
HC/zjnS9l5Fg5SIcGgx3sbAPEIEK6LoCCqg1vzOscVIH4C7EDgDFGRAAji/AtJSYtq4XoGxY
qBzeQ+jAxjd9AzJKSgE4l3QFIL6MBzi840R4wMaBTgTMLsDnP1dry4slcldDXQlD53gEqA7o
e5P15bre9MmHAPIlvPvZQmg6pfnRdK9XoP/lB6C51zltBFLfgEJqzzl+kQ33SMt8CQiw+6Zf
wQBSd/rvcDe32/Ue6RtkXQeCTzwOFm/FUD/g8aQeQqvLHpTKQ77rki4X5TePA4jLevOmFgLm
Je1wuFtW9V5XgDLIrmt/jFwHHQi9pPEL+s0H/fK337m5MG372+PA1Kgvt+aHT+q7kD70+P31
8O/V+eQX3ut8D3vyN10BLSZ/uXm/fb91oPvQ81hUzA998WEud+xvWubUh/u6pV9508d//ZtX
gvDrr336J96y4r+96YcA+xhvLwLt+ZKvA04v/Yhg/25P2cxv9yQF++ZP7yoArdxP0gJgAd4u
2WCh/n7O7P6PQvT/DhAKj4z87+f0bgDxItD27wYeoKweYANxoPeKDSL0LgDmyv2UzfgmLRky
Tu2Wy/FILU4OgALU7iH2T+ZOMPMk5e8CoAj2rwLnKvHQrvbcyu4SLQJKCwRhrrRgcP8WUNdu
YLkQ4N3I70vgzvoOwBIiAL/ETgjor+hEgwGVLf5M6+gi7V54EAGLwOpELww5sA/h7gk7kOOa
wPDuoufgrgqHQPVGz+sAcAi8b9NeTwhUT9+MsAfP8Dg+oPrGTQGFYO34sAmScAjskA6KYBIj
bRRhwQjijxGJ4O8KThUjjQhocdcw8e9gUQccEQphDuHerQrtDuEojkvk7ADsDvyY4A2X/zAS
RePvlC0Yi9HmvE4FdSD+nDEBSW0XIxDYhgALoY7sdrEXicDrWJES7C4ZZBAHCFHG5Az/Nm0a
i+ANg9H6TNETBQXu2jDiDE8e44/3ws8QIcPrbBAUjQAPt9EIyDEfaU8ZsFEIYo8C5PHAjmMd
uRH2QFH1lFEIbrH9btAeh2Adf64DKO4fl+AEL9IAN000XM8hBZIIFlIHePAGXkuuVI8QH/Dr
rHHPICQZmw0U7S4bhwAh2Y895K/gVLIflcAkq+4lC9HyhAAlsy4YFZLaANEDZ637Hi/pWEzO
vG4jxw4oZU8Z/C4QWbLyeA8Z5c8VrbIpE3IgvTEg524qndIS2/9SCEQS+2hNEjfvHF1q65Tg
K3+yBnUgKMnS7tSQAVMvLLfSwpjyIOuyIKFSLnOOLt8SJu9SB/Iy+doxKjdT2yQPMI3A7jrz
Gd7QMJmAKOMOMhQT8ugg9j7wHr/tJCOzGycTJUESIiMzJltz87QvKDrgM9lxE/fCIgeTCTVS
GToywzLx/ZTBDwUTDjPT6GpTBOMyJytxCYyzCGKSFoFuvsAzPOfrBZ9T6qqxmESzCHgQB3ZS
B97wFXOT/nKTPeKQGTIO7mRT3WjzMp9yJW2TCQ8SC6tyNodACH9uIvuJAkQSLLnsS+yO7j6R
MJvxJKGxJJZwInMyGR5TEPnzEOOyMDn/DiTFcUD1UzJLNOLa8z7nDj0nhOyykxneMCln7UUl
pRSHMgJIUjt1LQi1EBh1LU42lDo71EQlbd++Ut8UcTenU/XYLuQ2juREI66gTu0g9C9TRh/5
QeOgVBsBtPU6LvfoMCQ3bR+5c0fd8+v07RSvcTqHsjpldAaJVNuU7QCSVEkJtE1DFDLqFPIs
Sy0lDetggUpZdEI2UwF0yzwjbbl4cNtyUvHSSgejEhJ9UBqXkOX6dD2XK0jxNPvogCAxc+3S
qvVi81NP9BsH0RU2zIMqlOwi4AFSdR1LU+tKZf3QjzDxEitxoNN6UzDh8faqUFMjdUj/s0g9
1APHkU0btQF5/3H9/NIY09Mth69WAdQ6PbDT1rPyLCtZEw8J2TRYORUuJ5MG848t71TpPBBC
YTPxiFPUks9ax5ISsPIhLlDXslM4DTL+mpUyMbBTPzQ/9ZJcS9Vc/zUA23VdIWQJsZQhi5If
So8HLcxe/3Qev68IehUHiLFbuXAxlSBdPU/6YvUEqQ5h9S4SD0BUzTE00+YAWvM3iWADq3Rj
Ew/c5m0XGeACK+D3isVe7bHpwDLbLlJhI43qanYEs3UIlaDpYhUWdpVMjeDmtrI9UQLjLAHR
Zi0A/MrmNBAgm8A9cK4CAkAilS4DtbYISaNrcZDxYuoGzBZQmcA9Yo4ZtMhqmaEMcf9QHstQ
bWeNbQXlg1iubTNwPpvAgwKgayvwaiFDcczW41pM3OKtcYfsWR03cqWMcSW3cuMMci03c9kM
czW3c32Mcj03dAdVdEmXyUC3dFH3OE43dVm3OF6MvH7sAa7WWKxRdqHWXGi3zowFcGeM2SZg
AohgdZchAXKARnVgAnIAeJ+BeI0XJRCgr/ACeZUXfJ63eXFMAXIgATgSenWM2SREeJWBeY1A
eklCfCEEe7UXJch3g9A3yHZXCNY3x4QNe5N3Al4BCR4gARLgRRVAf/eXH353e1/veZX3efXX
fgWlr6pXB8zXgPU3eaPSfxG4CJjXfx+if/U3O/P3gF+BeOv/1wgUoK8mQH87bX1HmINF44Qn
GIP/1wg8OICLRYVbLoTNKoFRWAdCuBJhOIdPOBkWGAGINwG4d4Nb+OI4dwk8GAleDwmYuHjh
Fwk82HiRoIOzF4erGAGgGIo5somB13w9+IWtOHvNlwi+WIuPN4udmH4feImbeHyh2INfYX3F
2IyxeI5fD3mzV4nPpY3r+IuVIImToI/NWI6NA4+ZOH3bl361WI2RYHq78oiX4HtzgIqBt45f
oX0puHgfgImB2InXV3zpl7yo+PXoN44hGHkTYG9c1YWd2JIt2Yq1F5VV+ZKrWAk+2ZMhuFiK
5yRQOSo3bIphGYRr+YyVd4yHgHj7/+qOcxmYCfmJtXeTjQOT45d496aOrQyST6fQyFeRD1mY
hTh5i5d4R/mJgReThUB8TRiCuTkBTMuLi5ebF7mJ2TmYbTmXyTed25iBnVgSm9iMbXGYzTd+
j3mf9bmflVl5eXmZo7mW47efT9d7USahgReazcseDxmLg/ic93mbh1mfD5qcbbiRWbkS8Zei
y6vTDFikzbkIbhl4OTqVr0ijX9Skycv6zDmgc5mMCRqZzcuUEbqQFXqL07eh37m8rpnHFDim
iVmj9zeE0zeTIRiMYZm8gHmlxdekkfl4mzqrM7mvPJipyWuEtZq8sjqUjReVQ5iZTzl7qXqh
3/l/gzisn/+an995qkt5pOm6vP4Xj0dYomlsoYearZW5qZH3qMHHkNkYpMMPkOearml5kofA
kPfZqjf6kNVZntu5nzstf+U5jKE4GZLYjZtYhyG4jvOYVCRblRn7j5n4iZm4eY1ZsnOgmi0b
qH9aqAWlmzs5nxcXm5XAWKyXEkQZQoAbL3KXPYb7OY0XuB+CufvQUN1YbwyXI1vOuQtmusMP
ugUFdvGiplORd5kguYsHu/fJt1NXoFuXAM0bdXM4vSEEfN07voN3veW7vsXMvvHbiPN7v1GW
v/2bIv87wN+bvgXcvuG7wEP3wBG8cxV8wTO3wR28ciE8wiN3wim8cS38ws8twzX/PNo4vMN7
7cNB/NREfMQ9rcTBzAIsQAOEQMVZnAlcXBk0QMUXHMXPLAcs4K9zvEtwXBkswMb9DMi3DAl2
XH89QBmI3MeFXM+WPMuSnCSefAl+nMAtt8mbjAROIAFK4MWf3MiHAMu1nMt7XAMS4ARefAim
XAcaoMzPHARKoMxFYAjeXARAgAOOXAPWPAEa4MwrnMrrjANyYARGIAdCgMWf/MkBXdAJ3dB7
nHjjvAimPASYmAOEwAM2IHsvndL1uQQGfcUlPQQGvdAl3M/n7MdHQAc04ATs/Ip2PMlNHdVV
/ciJvARyQNMhHQk4QANoPX07HdUv/cg9OARIQAMAvQE0/9rYJdfKcwwEGqDZH50Iin2PW73H
oz18aD0EpPwkGqCKPQAJmr0BBt3YiXcEXjzTmz2ji+DbkZ3ESf3Lpryjj13adVyf1/1kkGAD
+BzNtb2K372JxT0H1t2h4f2KlB3HCv7GPMB/S8AITqDWheDMD73HG17TIR4JGr7e9d04tl17
ux23iHfdL33HmcB/G9vSDr7Itp3cdeAENiDHIz7HU57FWd7lAV4HBh0EjCDN1byWB/3RS2DP
6X0IAF3TRaAEcD7Z2/3NNEDSR0DS8Z3V533pA93pGT3Hf7zkdX7jhYAEcmADSqDhsT3ohQAE
Mp3WN+Do+zxzif3SE+DIof7t13g+e93+yRueBG5d44fZApw+1+N9CECg4XPgBNwe6U1cw0++
8Ovs8BHf2pJ+8dPe8Wu88SE/3hR/8tWs8i3fzDA/88ls8zkfzDz/870s9EVfy0i/9LHs9FGf
ygS+9V3/9WE/9mV/9mm/9m3/9nE/93V/93m/93c/CAAAIfkEBDIAAAAsZwDeAF4ADQAABv9A
nXBILBZNJpUQqTQOmc6hChmtWq9YayZjEm671a/VtM2az2gvV4hCwbTrKjmTrtuNYnM+Or/7
sTQuKDFNeW1vQoGDhWsqKC5NT2Upj5EyMY8zQ5gzMitvKpQoKZF3KxksLBkvSnl5p6mrrWso
GZpHWy9bGStCMC0ZKMC9OrUxqkm6L6qsfmQsOiounzqua8/R029fMbxOcysq3ShCyNHAb7Wr
NCqnKWwZ71UyKfW3RO54cWL5RVvdL/iU0ZEimA4YW+qlUPWuFosmw+rVIldEYYo5BovUkkfE
WpeN+ra0KCWJDkGDGHfFK7ZSjcqMHXfBaDPIiAtv0YZ41HGTWKR5XTc5EulzkhxCkxpb6gAG
pgpNilUKPuTZostOqUpcVK22UpUMI0QLUlR1KwYplhxPEZsR4+sdFbpY6BrJFYwYuKjmzupC
BmpJIWITZWgR42ZAtENkDOvWwu3bFcDcqLEbp11kRHlu0sBlMvCSueHgCZVxM4MLRFWCAAA7

--------------19826662D66D1BAFB278F57C
Content-Type: image/gif
Content-ID: 
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmailHS.gif"

R0lGODlhAQABAIAAAP///wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
--------------19826662D66D1BAFB278F57C--